@Research Paper <#LINE#>Physiological and biochemical study of Hydrilla verticillata (L.f.) Royle under cadmium heavy metal stress<#LINE#>Suraj Kumar @Behera,Aurobindo @Padhy,A. @Leelaveni <#LINE#>1-8<#LINE#>1.ISCA-IRJEvS-2018-043.pdf<#LINE#>PG Department of Botany, Berhampur University, Odisha-760007, India@PG Department of Botany, Berhampur University, Odisha-760007, India@PG Department of Botany, Berhampur University, Odisha-760007, India<#LINE#>27/4/2018<#LINE#>15/9/2018<#LINE#>Hydrilla verticillata, is a widespread submerged plant in Bhanjabihar is selected and inoculated in different concentration of cadmium (Cd) (1, 2, 3, 4, and 5ppm) as well as taken a control and studied on the physiological and biochemical parameters like total chlorophyll, protein, carbohydrate, amino acid and studies enzymatic activities like catalase and peroxidase under continuous light were studied in the summer season. The cadmium stress caused considerable inhibition of growth and synthesis of biomolecules with proportional to the concentration of metal. The cadmium toxicity decreased in biomolecules compounds like chlorophyll, protein, carbohydrate, amino acid and catalase and Peroxidase enzyme activity at lower concentration i.e., at 1ppm as well as higher concentrations like 2, 3, 4, and 5ppm. But at higher concentration of cadmium ie., 5ppm was found to be more toxic in the present study. There was a loss of total chlorophyll pigment shown in H. verticillata plant in cadmium stress. The protein content was decreased significantly (P ≤ 0.05) up to 2ppm, then slightly increased in 3ppm was observed. Also, amino acid content was decreased in all concentration of cadmium stress when compared to control. Sugar content also decreased in all concentration of cadmium solution but less toxic effect found in 1ppm as the sugar content was nearby to the control. Same way the activity of catalase enzyme showed significantly (P ≤ 0.05) decreased at the lowest concentration. With the increase of cadmium concentration, the decrease of catalase activity was found. Peroxidase enzyme also increased significantly (P ≤ 0.001) at 1ppm, however, the highest percentage of increase in peroxidase enzyme activity was found at 5ppm. The study suggests that the plant H. verticillata as of a phytoremediation of cadmium and used as a bioindicator to access the metal toxicity in the aquatic system.<#LINE#>Lepp N.W. (1981).@Effect of heavy metal pollution on plants.@Applied science publishers.@Yes$Foy C.D., Chaney R.L. and White M.C. (1978).@The physiology of metal toxicity in plants.@Annu. Rev. Plant physiology, 29, 511-566.@Yes$Woolhouse H.W. (1983).@Toxicity and tolerance in the responses of plants to metals.@Physiological plant ecology III, Springer, Berlin, Heidelberg, 245-300.@Yes$Gupta S.C. and Goldsbrough P.B. (1991).@Phytochelatin accumulation and cadmium tolerance in selected tomato cell lines.@Plant Physiol, 97, 306-312.@Yes$Van Assche F. and Clijsters H. (1990).@Effects of metals on enzyme activity in plants.@Plant, Cell & Environment, 13(3), 195-206.@Yes$Chandra P. and Kulshreshtha K. (2004).@Chromium accumulation and toxicity in aquatic vascular plants.@The Botanical Review, 70(3), 313-327.@Yes$Shah K. and Dubey R.S. (1998).@A18 kDa cadmium inducible protein Complex: its isolation and characterisation from rice (Oryza sativa L.) seedlings.@Journal of plant physiology, 152(4-5), 448-454.@Yes$Moya J.L., Ros R. and Picazo I. (1993).@Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants.@Photosynthesis Research, 36(2), 75-80.@Yes$Rai U.N., Tripathi R.D., Sinha S. and Chandra P. (1995).@Chromium and Cadmium bioaccumulation and toxicity in Hydrilla verticillata (l.f.) Royle and Chara corallina Wildenow.@Journal of Environmental Science and Health Part - A, 30(3), 537-551.@Yes$Arnon D.I. (1949).@Copper enzymes in isolated chloroplast: Polyphenol oxidase in Beta vulgaris.@Plant Physiol, 24, 1-15.@Yes$Lowry O.H., Rosenbrought N.J., Farr A.L. and Randal R.J. (1951).@Protein measurement with the Folin Phenol reagent.@J. Biol. Chem., 193, 265-275.@Yes$Moore S. and Stein W.H. (1948).@Photometric nin-hydrin method for use in the ehromatography of amino acids.@Journal of biological chemistry, 176, 367-388.@Yes$Yoshida S., Forno D.A., Cock J.H. and Gomoz K.A. (1971).@Laboratory Manual for Physiological Studies of Rice.@2nd edn. International Rice Research Institute, Loss Banos, Philippines.@Yes$Kar M. and Mishra D. (1976).@Catalase, peroxidase, and polyphenol oxidase activities during rice leaf senescence.@Plant Physiology, 57(2), 315-319.@Yes$Siedlicka A. and Krupa Z. (1996).@The interaction between cadmium and iron and its effects on the photosynthetic capacity of primary leaves of Phaseous vulgaris.@Plant Physiology and Biochemistry, 34, 833-841.@Yes$Falaky A.A., Aboulros S.A., Saoud A.A. and Ali M.A. (2004).@Aquatic plants for bioremediation of wastewater.@8th International Water Technology Conference, 361-377.@Yes$Ahmad P., Sharma S. and Srivastava P.S. (2007).@In vitro selection of NaHCO3 tolerant cultivars of Morus alba (local and Sujanpuri) in response to morphological and biochemical parameter.@Hort. Sci. (Prague), 34, 114-122.@Yes$Griffiths W.T. (1975).@Characterization of the terminal steps of chlorophyllide synthesis in etioplast membrane preparations.@Biochem. J., 152(3), 623-655.@Yes$Kumar A., Metwal M., Kaur S., Gupta A.K., Puranik S., Singh S. and Yadav R. (2016).@Nutraceutical value of finger millet [Eleusine coracana (L.) Gaertn.], and their improvement using omics approaches.@Frontiers in plant science, 7, 934.@Yes$Ericson M.C. and Alfinito A.E. (1984).@Proteins produced during salt stress in tobacco cell cultures.@Plant Physiology, 74(3), 506-509.@Yes$Palma J.M., Sandalio L.M., Javier C.F., Romero-Puertas M.C., Mc Carthy I. and del Ro L.A. (2002).@Plant proteases protein degradation and oxidative stress: the role of peroxisome.@Plant physiology and Biochemistry, 40(6-8), 521-530.@Yes$Davies C.S., Nielsen S.S. and Nielsen N.C. (1987).@Flavor improvement of soybean preparations by genetic removal of lipoxygenase‐2.@Journal of the American Oil Chemists@No$Garg P., Tripathi R.D., Rai U.N., Sinha S. and Chandra P. (1997).@Cadmium accumulation and toxicity in submerged plant Hydrilla verticillata (LF) Royle.@Environmental monitoring and assessment, 47(2), 167-173.@Yes$Kumar M., Tomar M. and Bhatnagar A.K. (2000).@Influence of Cadmium on growth and development of Vicia faba Linn.@Indian J. Exp. Biol., 38(8), 819-823.@Yes$Stiborová M., Ditrichová M. and BŘEzinová A. (1987).@Effect of heavy metal ions on growth and biochemical characteristics of photosynthesis of barley and maize seedlings.@Biologia Plantarum, 29(6), 453.@Yes$Tripathi R.D., Rai U.N., Gupta M. and Chandra P. (1996).@Induction of phytochelatins in Hydrilla verticillata (lf) Royle under cadmium stress.@Bulletin of environmental contamination and toxicology, 56(3), 505-512.@Yes$Tendon P.K. and Srivastava M. (2004).@Effect of cadmium and nickel on metabolism during early stages of growth in gram (Cicer arietinum L.) seeds.@Indian J. Agric. Biochem., 17, 31-34.@No$Saleh M. and Al-Garni S. (2006).@Increased heavy metal tolerance of cowpea plants by dual inoculation of arbuscular mycorrhizal fungi and nitrogen fixer Rhizobium bacterium.@Afr. J. Biotechnol., 5, 133-142.@Yes$Shim I.S. Monose Y. Yamamoto A., Kim D.W. and Usui K. (2003).@Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants.@Plant Growth Regul., 39, 285-292.@Yes$Lee K.C., Cunningham B.A., Paulsen G.M., Liang G.H. and Moore R.B. (1976).@Effects of cadmium on respiration rate and activities of several enzymes in soybean seedlings.@Physiol. Plant., 36, 4-6.@Yes$Van Assche F., Clijsters H. and Cardinales C. (1988).@Induction of enzyme capacity in plants as a result of heavy metal toxicity in Phaseolus vulgaris L.@by the treatment of Cd and Zn. Environ. Pollut., 52, 103-115.@Yes <#LINE#>Zooplankton diversity and distribution in a Fresco Lagoon (West Africa, Côte d’Ivoire)<#LINE#>Etile@Raphael N’doua ,Aka@Maryse N’guessan ,Blahoua@Georges Kassi ,Kouamélan@Paul Essetchi ,N’douba@Valentin <#LINE#>9-20<#LINE#>2.ISCA-IRJEvS-2018-056.pdf<#LINE#>Laboratoire d’Hydrobiologie et d’Ecotechnologie des Eaux, UFR Biosciences, Université Félix HOUPHOUËT-BOIGNY Abidjan-Cocody, 22 BP582, Abidjan, Côte d’Ivoire@Centre de Recherches Océanologiques (CRO), BPV 18, Abidjan, Côte d’Ivoire@Laboratoire d’Hydrobiologie et d’Ecotechnologie des Eaux, UFR Biosciences, Université Félix HOUPHOUËT-BOIGNY Abidjan-Cocody, 22 BP582, Abidjan, Côte d’Ivoire@Laboratoire d’Hydrobiologie et d’Ecotechnologie des Eaux, UFR Biosciences, Université Félix HOUPHOUËT-BOIGNY Abidjan-Cocody, 22 BP582, Abidjan, Côte d’Ivoire@Laboratoire d’Hydrobiologie et d’Ecotechnologie des Eaux, UFR Biosciences, Université Félix HOUPHOUËT-BOIGNY Abidjan-Cocody, 22 BP582, Abidjan, Côte d’Ivoire<#LINE#>25/6/2018<#LINE#>24/9/2018<#LINE#>Our objective during this study was to determine Fresco lagoons zooplankton fauna composition, abundance and biomass spatial and temporal variation in relation to some environment parameters. Zooplankton organisms were collected monthly during an annual cycle (August 2013 to September 2014) in five sampling sites. This lagoonal ecosystem zooplankton community was composed of 54 taxa including Copepoda (42.59%), Cladoceran (14.81%) Rotifera (9.26%), and other zooplankton organisms (33.34%). Fresco lagoon zooplankton community diversity was mainly dominated by zooplankton marine taxa (54.72%), followed by freshwater and brackish taxa with 22.64% each. In Fresco lagoon, zooplankton abundance varied from 207 ind/l(mean) during the rainy season to 296 ind/l (mean) throughout the dry season. During the rainy season, zooplankton abundance varied from 45 to 387 ind/l according to stations while it varied from 29 to 579 ind/l throughout the dry season. All these variation were statistically significant (p < 0.01). Fresco zooplankton community was mainly dominated by Copepoda taxa (main 98 % of total abundance), with Oithona brevicornis (56.11%) and Acartia clausi (33.26%) as main species. This study revealed also that, in Fresco lagoon, zooplankton taxa in stations far from of the channel were mainly influenced by pH, Salinity and conductivity while in stations near of the channel zooplankton composition and abundance variation were mainly under dissolved oxygen, phosphates and ammonium concentrations influence.<#LINE#>Egnankou W.M., Sankare Y. and Conarams-CI (2004). Fiche descriptive sur les zones humides Ramsar (FDR) - Fresco, Côte d’Ivoire, 18.@undefined@undefined@No$Yamani F.Y., Skryabin V., Gubanova A., Khvorov S., Prusova I. (2011).@Marine zooplankton practical guide for the Northwestern Arabian Gulf,@Volume 1. First Edition, Kuwait Institute for Scientific Research (Publisher). 196 / ISBN 978-99966-95-07-0.@Yes$El Khalki A., Gaudy R. and Moncef M. (2004).@Étude des variations saisonnières du peuplement de copépodes de l’estuaire de l’Oum Er Rbia (côte atlantique du Maroc): impact de la pollution urbaine de la ville Azemmour.@Marine Life, 14(1-2), 19-29.@Yes$Bianchi F., Acri F., Aubry F.B., Berton A., Boldrin A., Camatti E., Cassin D. and Comaschi A. (2003).@Can plankton communities be considered as bio-indicators of water quality in the Lagoon of Venice?.@Marine Pollution Bulletin, 46(8), 964-971.@Yes$Webber M., Edwards Myers E., Campbell C. and Webber D. (2005).@Phytoplankton and zooplankton as indicators of water quality in Discovery Bay, Jamaica.@Hydrobiologia, 545, 177-193.@Yes$Tackx M.L.M., De Pauw N., Van Mieghem R., Azemar F., Hannouti A., Van Damme S., Fiers F., Daro N. and Meire P. (2004).@Zooplankton in the Schelde estuary, Belgium and the Netherlands. Spatial and temporal patterns.@Journal of Plankton Research, 26(2), 133-141.@Yes$Duggan I.C., Green J.D. and Shiel R.J. (2001).@Distribution of rotifers in North Island, New Zealand, and their potential use as bioindicators of lake trophic state.@Hydrobiologia, 446, 155-164.@Yes$Landa G.G., Barbosa F.A.R., Rietzler A.C. and Maia Barbosa P.M. (2007).@Thermocyclops decipiens (Kiefer, 1929) (Copepoda, cyclopoida) as indicator of water quality in the State of Minas Gerais, Brazil.@Brazilian Archives of Biology and Technology, 50(4), 695-705.@Yes$Etilé N.R., Kouassi A.M., Aka M.N., Pagano M., N’douba V. and Kouassi N.J. (2009).@Spatio-temporal variations of the zooplankton abundance and composition in West African tropical coastal lagoon (Grand-Lahou, Côte d’Ivoire).@Hydrobiologia, 624, 171-189.@Yes$Rancurel P. (1971).@Les Teredimdae (Mollusques Lamellibranches) dans les lagunes de Côte d’Ivoire.@Mémoire ORSTOM N° 47, Paris, 212.@Yes$Issola Y., Kouassi A.M., Dongui B.K. and Biemi J. (2008).@Caractéristiques physico-chimiques d’une lagune côtière tropicale: lagune de Fresco (Côte d’Ivoire).@Afrique Science, 04(3), 368-393.@Yes$Issola Y., Kouassi A.M., Dongui B.K., Adingra A.A. and Biemi J. (2009).@Concentration en métaux lourds des sédiments d’une lagune côtière tropicale: lagune de Fresco (Côte d’Ivoire).@Journal of Applied Biosciences, 18, 1009-1018.@Yes$Konan E.S., Da K.P. and Aka N.M. (2012).@Etude Systématique des Conjugatophyceae, Chlorophyceae et Euglenophyceae d’une lagune tropicale: la lagune de Fresco (Côte d’Ivoire).@Journal of Applied Biosciences, 49, 3406-3414.@Yes$Rose M. (1933).@Faune de France. 26. Copépodes pélagiques.@Paris: Office central de faunistique, 372.@Yes$Tregouboff G. and Rose M. (1957).@Manuel de planctonologie méditerranéenne.@Paris: Centre National de la Recherche Scientifique édition, 587.@Yes$Wiafe G. and Frid C.L.J. (2001).@Marine zooplankton of West Africa (with CDROM). Marine Biodiversity Capacity Building in the West African Sub-region.@Darwin Initiative Report 5, UK. Ref. 162/7/451, 125.@Yes$Conway D.V.P. (2012).@Marine zooplankton of southern Britain. Part 1: Radiolaria, Heliozoa, Foraminifera, Ciliophora, Cnidaria, Ctenophora, Platyhelminthes, Nemertea, Rotifera and Mollusca.@A.W.G. John (Eds.). Occasional Publications. Marine Biological Association of the United Kingdom, N°25, Plymouth, United Kingdom, 138.@Yes$Conway D.V.P. (2015).@Marine zooplankton of southern Britain.@Part 3: Ostracoda, Stomatopoda, Nebaliacea, Mysida, Amphipoda, Isopoda, Cumacea, Euphausiacea, Decapoda, Annelida, Tardigrada, Nematoda, Phoronida, Bryozoa, Entoprocta, Brachiopoda, Echinodermata, Chaetognatha, Hemichordata and Chordata. A.W.G. John (Eds.). Occasional Publications. Marine Biological Association of the United Kingdom, N°27, Plymouth, United Kingdom, 271.@Yes$Koste W. and Shiel R.J. (1987).@Rotifera from Australian Inland Waters. II. Epiphanidae and Brachionidae (Rotifera: Monogononta).@Znvertebrate Taxon, 1(7), 949-1021.@Yes$Boxshall G.A. and Braide E.I. (1991).@The freshwater cyclopoids copepods of Nogeria, with an illustrated key to all species.@Bulletin of Museum of Natural History (Zool.), 57(2), 185-212.@Yes$Jeje C.Y. (1988).@A revision of the Nigerian species of the genera Mesocyclops Sars, 1914 and Thermocyclops Kiefer, 1927 (Copepoda: Cyclopoida).@Hydrobiologia, 164, 171-184.@Yes$De Mannuel J. (2000).@The rotifers of Spanish reservoirs: ecological, systematical and zoogeographical remarks.@Liinnetica, 19, 91-167.@Yes$Pagano M. and Saint-Jean L. (1993).@Organic matter, carbon, nitrogen and phosphorus contents of the mesozooplankton, mainly Acartia clausi, in a tropical brackish lagoon (Ebrié Lagoon, Ivory-Coast).@Internationale Revue der gesamten Hydrobiologie und Hydrographie, 78, 139-149.@Yes$Strickland J.D.H. and Parsons T.R. (1972).@A practical handbook of seawater analysis.@Fisheries Research Board of Canada, 167, 1-311.@Yes$Rahm V.U. (1964).@Zur oekologie des zooplanktons der Ebrié (Elfenbeinkliste).@Acta tropica, XXI(1), 1-47.@Yes$Monney I.A., Etilé R.N., Ouattara I.N. and Koné T. (2015).@Seasonal distribution of zooplankton in the Aby-Tendo-Ehy lagoons system (Côte d’Ivoire, West Africa).@International Journal of Biological Chemical Sciences, 9(5), 2362-2376.@Yes$Aka M.N., Etilé R.N., Konan F.K. and Bony Y.K. (2016).@Zooplankton composition and distribution in relationship with environmental parameters in a tropical coastal lagoon (Ebrié lagoon: Aghien, Côte d’Ivoire).@International Research Journal of Biological Sciences, 5(12), 1-12.@No$Aka M.N., Etilé R.N. and Blahoua G.K. (2016).@Anthropogenic Activities Impact on Zooplankton Community in a Tropical Coastal Lagoon (Ebrié, Côte d’Ivoire).@International Journal of Contemporary Applied Sciences, 3(N°.9), 43-63.@No$Pagano M. and Saint-Jean L. (1994).@Le zooplancton.@In: Durand, J.R., Dufour, P., Guiral, D. and Zabi, G.S. (Eds.). Environnement et ressources aquatiques de Côte d@No$Webber M., Myers E., Campbell C. and Webber D. (2005).@Phytoplankton and zooplankton as indicators of water quality in Discovery Bay, Jamaica.@Hydrobiologia, 545, 177-193.@Yes$Delpy F., Pagano M., Blanchot J., Carlotti F. and Thibault-Botha D. (2012).@Man-induced hydrological changes, metazooplankton communities and invasive species in the Berre Lagoon (Mediterranean Sea, France).@Marine Pollution Bulletin, 64(9), 1921-1932.@Yes$Benítez-Díaz Mirón I.M., Castellanos-Páez M.E., Garza-Mouriño G., Ferrara-Guerrero M.J. and Pagano M. (2014).@Spatiotemporal variations of zooplankton community in a shallow tropical brackish lagoon (Sontecomapan, Veracruz, Mexico).@Zoological Studies, 53, 59. http://www.zoologicalstudies.com/content/53/1/59.@Yes$Arfi R., Pagano M. and Saint Jean L. (1987).@Communautés zooplanctoniques dans une lagune tropicale (la lagune Ebrié, Cote d@Revue d’Hydrobiologie Tropicale, 20, 21-35.@Yes$Etilé R.N., Aka M.N., Aka M.K., Pagano M. and N’douba V. (2012).@Spatiotemporal Variations in the Abundance, Biomass, Fecundity, and Production of Oithona brevicornis (Copepoda: Cyclopoida) in a West African Tropical Coastal Lagoon (Grand-Lahou, Côte d’Ivoire).@Zoological Studies, 51(5), 627-643.@Yes$Etilé R.N., Blahoua G.K., Bédia T.A., Kouamelan P.E. and N’douba V. (2017).@Spatio-temporal Variability of Acartia clausi (Copepoda, Calanoida) Population Structure, Abundance, Body Length, and Biomass in a Tropical Coastal Lagoon (Grand-Lahou, Côte d’Ivoire).@International Journal of sciences, 6, 16-28.@No <#LINE#>Trophic state evalutation of Mono River at Athieme using physico-chemical parameters (South-East Benin)<#LINE#>Chouti@Waris Kéwouyèmi ,Djangni@Octave ,Hounkpe@Jechonias <#LINE#>21-33<#LINE#>3.ISCA-IRJEvS-2018-057.pdf<#LINE#>Laboratory of Inorganic Chemistry and Environment, Faculty of Sciences and Techniques (FAST), University of Abomey-Calavi, Benin@Laboratory of Applied Hydrology, National Institute of Water (NIW), University of Abomey-Calavi, Cotonou, Benin@Laboratory of Geology, Mines and Environment, Faculty of Sciences and Engineering, University of Abomey-Calavi, Benin<#LINE#>26/6/2018<#LINE#>27/9/2018<#LINE#>This paper deals with the assessment of the physicochemical quality and trophic status of the Mono River in the commune of Athiémé. The sampling campaign was conducted in August 2017. The samples were taken a few centimeters below the surface of the water. Metal analysis was performed with using a HACH LANGE DR2800 spectrophotometer. Copper is determined by the Bicinchroninate method and zinc by the Zincover method. The physicochemical analysis revealed that this water is not mineralized, contains no salt at all, is highly oxygenated, is very turbid and is not rich in nutrients such as nitrate, nitrite, ammonium and phosphates. Regarding the concentration of metallic trace elements, namely copper and zinc, it does not constitute a risk for humans but represents a high risk for aquatic organisms present in the Mono River. As for the study of the trophic evaluation it reveals that the river is oligotrophic that is to say is poor in nutrients and therefore does not run the immediate risk of the phenomenon of eutrophication.<#LINE#>Gleick P. (1993).@Water in crisis: a guide to the world’s fresh water resources.@Oxford: Oxford University Press.@Yes$Costanza R., Cumberland J., Daly H., Goodland R. and Norgaard R. (1997).@An introduction to ecological economics.@Boca Raton: CRC Press.@Yes$Vazquez G. and Favila M.E. (1998).@Status of the health conditions of subtropical Atezealake.@Aquatic Ecosystem Health and Management, 1, 245-255.@Yes$Dokulil M., Teubner K. and Donabaum K. (2000).@Restoration of a shallow, ground-water fed urban lake using a combination of internal management strategies: a case study.@Archivfu¨r Hydrobiology, Special Issue Advances in Limnology, 55, 271-282.@Yes$Tazi O., Fahde A. and Younoussi S. (2001).@Impact de la pollution sur l’unique réseau hydrographique de Casablanca, Maroc.@Sécheresse, 12, 129-134.@Yes$Malmqvist B. and Rundle S. (2002).@Threats to the running water ecosystems of the world.@Environmental Conservation, 29(2), 134-153.@Yes$Vannote R., Minshall G., Cummins W., Sedell R. and Cushing C. (1980).@The River Continuum Concept.@Can. J. Fish. Aquat. Sci., 37, 130-137.@Yes$Dolédec S., Statzner B. and Bournard M. (1999).@Species traits for future biomonitoring across ecoregions: patterns along a human-impacted river.@Freshw. Biol., 42, 737–758.@Yes$Sweeney B., Bott T., Jachson J., Kaplan L., Newbold J., Standley L., Hession W. and Horwitz R. (2004).@Riparian deforestation, stream narrowing, and loss of stream ecosystem service.@Proc. Natl. Acad. Sci., USA 101: 14132-14137.@Yes$MYP II (2013).@Etat des lieux des ressources en eau dans les Communes de Lokossa, Athiémé et Dogbo.@Rapport provisoire, 59.@No$Ago E. (2005).@Analyse des risques d@Université de Liège/Faculté Universitaire des Sciences Agronomiques de ultra structure, biologie, Doctorat d’Etat ès sciences de Biologie Animale, 297.@Yes$Ifremer (2000).@Mise à jour d’indicateurs du niveau d’eutrophisation des milieux lagunaires méditerranéens – Rapport final-09-2000.@(Tome I – 236p) (tome II – 196p).@Yes$Pouomogne V. (1998).@Comment Produire du Poisson à Coût Modéré (des Exemples du Cameroun). Pisciculture en Milieu Tropical Africain.@CEPID/Coopération Française Yaoundé, Presse Universitaire d’Afrique; 236.@No$Dèdjiho A. (2011).@Evaluation de la chaine trophique d’une aire marine protégée en relation avec sa physico-chimie: cas de Gbèzoumè dans la commune de Ouidah.@Mémoire de DEA. FAST/UAC, Bénin.@Yes$Beaux J.F. (1998).@L’environnement.@Repères pratiques, Nathan, 160.@Yes$Lamizana-Diallo M., Kenfach S. and Millogo-Rasolodimby J. (2008).@Evaluation de la qualité physico-chimique de l’eau d’un cours d’eau temporaire du Burkina Faso: Le cas de Massili dans le Kadiogo.@Sud Sciences et Tehnologies, 16, 23-28.@Yes$Abou Y. (2001).@Effet d’une couverture d’Azolla LAM sur la production piscicole du tilapia Oreochromisniloticus (L.) en étangs dans la banlieue de Cotonou (Bénin).@Mémoire présenté pour l’obtention du diplôme d’études complémentaire en éco-technologie des eaux continentales. Facultés Universitaires Notre Dame de la Paix. Faculté des Sciences. Namur-Belgique.@Yes$Houémènou H. (2012).@Evaluation des déchets d’origine anthropique et leurs impacts potentiels sur les eaux du lac Nokoué.@Mémoire de master II en génie de l’environnement à l’EPAC/UAC, 84, Bénin.@Yes$Roche International (2000).@Etude du Projet d’aménagement des plans d’eau du sud- Bénin; Synthèse de l’état des lieux et cadre de développement.@Rapport final, 90.@Yes$Deltreil J., Feuillet M., Gras P., Marin J. and Marteil L. (1974).@Le milieu physico-chimique. In : Maurin, C. (Publ.).@Revue des travaux de l@Yes$Mama D. (2010).@Méthodologie et résultats du diagnostic de l’eutrophisation du lac NOKOUE (BENIN).@Thèse de doctorat, Université de Limoges, France, 157.@Yes$Mouelhi S. (2000).@Etude écologique de la retenue de Sidi Salem: Aspects physicochimiques des eaux et dynamique des peuplements zooplanctoniques.@Thèse de doctorat en sciences biologiques, université de Tunis II, 21-126.@Yes$Turki S. (2002).@Contribution à l’étude bio-écologique des rotifères, cladocères, copépodes des eaux continentales tunisiennes et dynamique saisonnière du zooplancton de la retenue de barrage Bir M’chergua.@Thèse de Doctorat en Sciences Biologiques. Université de Tunis El Manar/INSTM. 225.@Yes$Labroue L., Capblancq J. and Dauta A. (1995).@Cycle des nutriments: l’azote et le phosphore. In Pourriot et MeybecK. Limnologie générale Masson, Paris.@Collection Ecologie, 25, 727-764.@Yes$André G. (1995).@Ecolochimie.@Paris; 351.@Yes$Djibril R. (2001).@Impact de l@Mémoire de fin de formation CPU/UAC, 160.@Yes$Dussart B. (1992).@Limnologie, l’étude des eaux continentales.@Paris, Boubée, 2e éd. (1reéd. 1966), 681.@No$Rodier J., Bazin C., Broutin J., Chambon P., Chapsaup H. and Rodi L. (1996).@L’analyse de l’eau : Eaux naturelles, eaux résiduaires, eaux de mer.@Ed. Dunod, Paris, 30-1086.@Yes <#LINE#>Quarry dust effect on trees and their tolerance ability at Bethamcharla, Kurnool District, AP, India<#LINE#>Bai@G. Meera ,Anjali@B. ,Shameem@S. Arifa <#LINE#>34-39<#LINE#>4.ISCA-IRJEvS-2018-059.pdf<#LINE#>Department of Botany, Rayalaseema University, Kurnool – 7, AP, India@Rayalaseema University, Kurnool -7, AP, India@Rayalaseema University, Kurnool -7, AP, India<#LINE#>10/7/2018<#LINE#>12/9/2018<#LINE#>Different plant species vary over a considerable range in their susceptibility to air pollution. Since there is a little information available about responses of quarries, we selected the subject to study the influence of quarry dust on selected trees growing around quarries at Bethamcherla, Kurnool district and to measure their Air pollution tolerance indices to suggest the plants that are suitable to raise in such areas to develop a green belt. Dust pollution causes water stress also in habitats. Because growing of species that are having high APTIs are able to increase their number and can also able to increase water table by reducing the temperatures of the area. The study suggests to grow Azadirachta indica, Tamarindus indica, and Terminalia catappa around quarry dust polluted areas. In A.indica and T.indica, the Relative Water Content is very high. Whereas in T.catappa there is no change in RWC in polluted site sample. According to several observations, RWC in plants serves as an important indicator of drought confrontation in plants.<#LINE#>Aron D. (1949).@Copper enzymes isolated chloroplasts, polyphenoloxidase in Beta vulgaris.@Plant Physiology, 24, 1-15.@Yes$Maclachlan S. and Zalik S. (1963).@Plastid structure, chlorophyll concentration, and free amino acid composition of a chlorophyll mutant of barley.@Canadian Journal of Botany, 41(7), 1053-1062. doi.org/10.1139/b63-088.@Yes$Singh A. (1977).@Practical Plant Physiology.@Kalyani publishers, New Delhi.@Yes$Agbaire P.O. and Esiefarienrhe E. (2009).@Air pollution tolerance indices (APTI) of some plants around Otorogun gas plants in delta state.@Nigeria. J. of Applied Science and Envi. Management, 13, 11-14.@Yes$Anne Marie Helmenstine (2018).@Vitamin C Determination by Iodine Titration.@https://www.thoughtco.com/vitamin-c-determination-b.@No$Singh S.K. and Rao D.N. (1983).@Evaluation of the plants for their tolerance to air pollution.@Proc.Symp on air pollution control held at IIT, Delhi, 218-224.@Yes$Holt E.A. and Miller D.W. (2011).@Bio indicators: Using organisms to measure environmental impacts.@Nat. Educ. Knowl., 2(2), 8.@Yes$Singh S.K. and Rao D.N. (1983).@Evaluation of the plants for their tolerance to air pollution.@Proceedings of Symposium on air pollution control held at ITI, Delhi, 218-224.@Yes$Scholz F. and Reck S. (1977).@Effects of acids on forest trees as measured by titration in vitro, inheritance of buffering capacity in Picea abies.@Water, Air, and Soil Pollution, 8(1), 41-45.@Yes$Singh S.N. and Verma A. (2007).@Phytomedicine of Air Pollutants, A review.@In: Environmental Bioremediation Technology, (Eds: Singh, S.N. and R.D. Tripathi) Springer, Berlin Heidelberg, 1, 293-314.@Yes$Innes J.L. and Haron A.H. (2000).@Air pollution and the forests of developing and rapidly industrializing regions.@CAB 1. Wallingford, U.K.@Yes$Verma S.S. (2003).@Formation and destruction of sulphur oxides with temperature.@J. Indian Inst. Environ Manag., 29(2), 96-101.@No$Rai P.K., Panda L.S.S., Chutia B.M. and Singh M.M. (2013).@Comparative assessment of air pollution tolerance index (APTI) in the industrial (Rourkela) and non–industrial area (Aizawl) of India: An Eco management approach.@African J. Environ. Sci. and Tech., 7(10), 944-948. doi.org/10.5897/AJEST2013.1532.@Yes$Geravandia M., Farshadfara E. and Kahrizi D. (2011).@Evaluation of some physiological traits as indicators of drought tolerance in bread wheat genotypes.@Russian, J.Plant Physiol., 58(1), 69-75.@Yes$Krishnaveni M., Madhaiyan P., Durairaj S., Chandrasekhar R. and Amsavalli L. (2013).@Air Pollution Tolerance Index of plants at Perumal Malai Hills, Salem, Tamil Nadu, India.@Int.J.Pharma.Sci.Rev. and Res., 20(1), 234-239.@Yes$Kaur M. and Nagpal A.K. (2017).@Evaluation of air pollution tolerance index and anticipated performance index of plants and their application in development of green space along the urban areas.@Environ. Sci. Pollut. Res., 24(23), 18881-18895.@Yes$Tripathi A.K. and Gautam M. (2007).@Biochemical parameters of plants as indicators of air pollution.@J.Environ. Biol., 28, 127-132.@Yes$Mir Ab Q., Yazdani T., Kumar A., Narain K. and Yunus M. (2008).@Vehicular population and pigment content of certain avenue trees.@Poll.Res., 27, 59-63.@Yes$Rahmawati N., Rosmayati Delvian and Basyuni M. (2014).@Chlorophyll content of soybean as affected by foliar application of ascorbic acid and inoculation of arbuscular mycorrhizal fungi in saline soil.@Int.J.Sci.Technol.Res., 3(7), 127–131.@Yes$Deepalakshmi A.P., Ramakrishnaiah H., Ramachandra Y.L. and Radhika R.N. (2013).@Roadside plants as Bio– indicators of Urban Air Pollution.@IOSR J. of Environ.Sci.Toxic. and Food Tech. (IOSR–JESTFT), 3(3), 10-14. doi. 10.9790/2402-0331014.@Yes$Keller T. and Schwanger H. (1977).@Air pollution and ascorbic acid.@European Journal of Forest Pathology, 7(6), 338-350. doi.org/10.1111/j.1439-0329.1977.tb00603.x@Yes$Gill S.S. and Tuteja N. (2010).@Reactive oxygen species and antioxidant machinery in abiotic stress tolerance crop plants.@Plant Physiol.Biochem., 48(12), 909-930. doi.org/10.1016/j.plaphy.2010.08.016.@Yes$Sanghi S.B., Sharma C. and Sanghi S.K. (2015).@Comparison of APTI values of some medicinal plants of industrial areas and Ratapani wild life sanctuary in Raisen district of Madhya Pradesh.@Int.J.Pharma.Life Sci., 6(1), 4157-4160.@Yes @Short Communication <#LINE#>Application of Brachystegia eurycoma seed hulls for the removal of cadmium in aqueous solution<#LINE#>Khalid@Musa A. ,Abdullahi@Mahmood ,Gadam@Sadiq I. ,Abba@Mohammed D. ,Mahmud@Abdulkarim Y. ,Jada@Muhammad B. ,Ibrahim @Isma’il ,Musa@Mas’ud J. <#LINE#>40-43<#LINE#>5.ISCA-IRJEvS-2017-030.pdf<#LINE#>National Research Institute for Chemical Technology, P.M.B 1052, Zaria, Kaduna State, Nigeria@National Research Institute for Chemical Technology, P.M.B 1052, Zaria, Kaduna State, Nigeria@National Research Institute for Chemical Technology, P.M.B 1052, Zaria, Kaduna State, Nigeria@National Research Institute for Chemical Technology, P.M.B 1052, Zaria, Kaduna State, Nigeria@National Research Institute for Chemical Technology, P.M.B 1052, Zaria, Kaduna State, Nigeria@National Research Institute for Chemical Technology, P.M.B 1052, Zaria, Kaduna State, Nigeria@National Research Institute for Chemical Technology, P.M.B 1052, Zaria, Kaduna State, Nigeria@National Research Institute for Chemical Technology, P.M.B 1052, Zaria, Kaduna State, Nigeria<#LINE#>7/3/2018<#LINE#>27/8/2018<#LINE#>Cadmium is amongst the most toxic and hazardous heavy metals found in surface and aqueous effluents from various manufacturing processes. In this study, the potential of Brachystegia eurycoma seed hulls to remove cadmium ions from aqueous solution was investigated. The effects of concentration of adsorbate (10-100mg/l), time of contact (20-100minutes), pH (2-10) and adsorbent dose (1-5g) on the adsorption of cadmium ions was studied. Within the range of variables studied, 98% cadmium ions were removed from aqueous solution at pH of 6, contact time of 40minutes, adsorbent dose of 1g and concentration of adsorbate of 30mg/l. The result indicated that Brachystegia eurycoma seed hulls were suitable for adsorption of cadmium from aqueous solution.<#LINE#>Putra W.P., Kamari A., Yusoff S.N.M., Ishak C.F. and Mohamed A., Hashim N. and Isa I.M. (2014).@Biosorption of Cu (II), Pb (II) and Zn (II) ions from aqueous solutions using selected waste materials: Adsorption and characterisation studies.@Journal of Encapsulation and Adsorption Sciences, 4(01), 25-35.@Yes$Ali F., Mussa T., Abdulla A., Alwan A. and Salih D. (2015).@Removal of Cadmium from Wastewater Using Low Cost Natural Adsorbents.@Intern. Resear.J. Environ. Sci., 4(6), 11-15.@No$Gunatilake S.K. (2015).@Methods of Removing Heavy Metals from Industrial Wastewater.@J. Multi. Eng. Sci. Stu., 1(1), 12-18.@Yes$Nand V., Maata M., Koshy K. and Sotheeswaran S. (2012).@Water purification using Moringa oleifera and other locally available seeds in Fiji for heavy metal removal.@International Journal of Applied Science and Technology, 2(5), 125-129.@Yes$Oluwaseye A., Uzairu A. and Eddy O.N. (2011).@Removal of Ni (11) and Pb (11) from Aqueous Solution Using Escherichia coli Immobilized in Agarose Gel.@Pelagia Resear. Lib., 2(5), 157-172.@No$Ikegwu O.J., Okechukwu P.E. and Ekumankana E.O. (2010).@Physico-Chemical and Pasting Characteristics of Flour and Starch from Achi Brachystegiaeurycoma Seed.@J. Food Technol., 8(2), 58-66.@Yes$Bazrafshan E., Mostafapour F.K., Faridi H. and Zazouli M.A. (2012).@Application of Moringa peregrina seed extract as a natural coagulant for phenol removal from aqueous solutions.@African Journal of Biotechnology, 11(103), 16758-16766.@Yes$Sumathi T. and Alagumuthu G. (2014).@Adsorption Studies for Arsenic Removal Using Activated Moringa oleifera.@Intern. J. Chem. Eng., 6.@Yes