8th International Science Congress (ISC-2018).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Ultimate duality field-matter: fields structural unification

Author Affiliations

  • 1Section of Physical Sciences, École Normale Supérieure, Marien Ngouabi University, Brazzaville, Congo

Res. J. Recent Sci., Volume 7, Issue (3), Pages 28-36, March,2 (2018)

Abstract

In quantum field theory, the field unification is a unsolved question. Previous studies allowed us initiating a theory which assumes the duality field-particle. Here, we demonstrated the corresponding field equations in space-time symmetry. Their origin and interpretation allowed showing or proposing: i. the specification of the duality field-matter; ii. the physical meaning of a quantum state; iii. the spin-1/2 origin of fundamental fermions; iv. the interpretation of gauge-field components as six substates representing scalar/vector gauge fermions in any field; v. the existence of four stable fermions in this while the two instable others appear with additional time dimensions; vi. the field equations validity for any system from mass and charge normalizations; vii. the possible existence of mass and charge object moving at light speed; viii. the compositeness of massive and charged gauge fermions such as leptons or quarks; ix. the evident existence of gravitational and electromagnetic fermions; x. the spin-1 for all fundamental vector bosons and the spin-0 for the scalar ones; xi. the difference between matter and antimatter and xii. a priliminary vacuum state. In all, the results show a structural unification of the four ordinary fields.

References

  1. Álvarez-Gaumé L. and Vázquez-Mozo M.A. (2011)., An invitation to Quantum Field Theory., Springer, Berlin. arXiv:hep-th/0510040v4
  2. Aitchison I.J.R. and Hey A.J.G. (1982)., Gauge Theories in Particle Physics., AdamHilger Ltd, Bristol.
  3. Weinberg S. (1995)., The Quantum Theory of Fields., Cambridge University Press, London, 1. ISBN 978-0521550017
  4. Robson B. A. (2013)., Progressing Beyond the Standard Model., Advances in High Energy Physics, 341738, 1-12
  5. Cooper F., Khare A. and Sukhatme U. (1995)., Supersymmetry and quantum mechanics., Physics Reports, 251(5-6), 267-385.
  6. Polonsky N. (2001)., Supersymmetry: Structure and phenomena. Extensions of the standard model., Lect. Notes Phys. M68, 1
  7. Louis J., Mohaupt T. and Theisen S. (2007)., String theory: An overview., Springer, Berlin, Heidelberg, In Approaches to Fundamental Physics, 289-323.
  8. Garrett K. and Du ̅da G. (2010)., Dark Matter A Primer., Advances in Astronomy, ID 968283
  9. Moukala L.M. and Nsongo T. (2017)., Vacuum Crystalline structures in field presence: the unified field versatility., BJMP, 3(2), 245-254.
  10. Moukala L.M. (2017)., The unified energy as vacuum quintessence in wave equations., Res. J. Physical Sci., 5(3), 1-6.
  11. Walter D. and Gies H. (2000)., Probing the quantum vacuum: perturbative effective action approach., Springer, Berlin. ISBN 3-540-67428-4.
  12. King B., Di Piazza A. and Keitel C.H. (2010)., Double-slit vacuum polarisation effects in ultra-intense laser fields., Phys. Rev. A, 82, 032114
  13. Altfeder I., Voevodin A.A. and Roy A.K. (2010)., Vacuum Phonon Tunneling., Phys. Rev. Let. 105, 166101
  14. Sellan D.P., Landry E.S., Sasihithlu K., Narayanaswamy A., McGaughey A.J.H. and Amon C.H. (2012)., Phonon transport across a vacuum gap., Physical Review B, 85(2), 024118.
  15. Heras R. (2016)., The Helmholtz theorem and retarded fields., Eur. J. Phys., 37, 065204. arXiv:1609.08149v1
  16. D, Preons: Models of Leptons, Quarks and Gauge Bosons as Composite Objects., World Scientific, Singapour, ISBN 978-981-02-1019-9
  17. Antonello M., Aprili P., Baiboussinov B., Ceolin M.B., Benetti P., Calligarich E. and Cline D.B. (2012)., Measurement of the neutrino velocity with the ICARUS detector at the CNGS beam., Physics Letters B, 713(1), 17-22.
  18. Mertens S. (2016)., Direct Neutrino Mass Experiments., Journal of Physics: Conference Series 718, 022013. arXiv:1605.01579
  19. Patrignani C. (2017)., The Review of Particle Physics., (Particle Data Group). Chin. Phys. C, 40, 10000. http://pdg.lbl.gov