7th International Science Congress (ISC-2017).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Thermal studies of lingo-cellulosic palm fiber reinforced hybrid green composites

Author Affiliations

  • 1G.N. Khalsa College, Matunga, Mumbai, MS, India
  • 2Polymer Science Lab, University of Rajasthan, Jaipur, Rajashthan, India

Res. J. Recent Sci., Volume 6, Issue (5), Pages 22-27, May,2 (2017)

Abstract

Thermal properties of the hybrid composites have been explored by differential Scanning Calorimeter (DSC) and Transient Plane Source (TPS) technique. Hybrid composites have been prepared by reinforcing lingo-cellulosic oil palm fibers and glass fibers in phenol formaldehyde resin matrix. Non-isothermal crystallization kinetics has been studied by Differential Scanning Calorimeter. Parameters like enthalpy released and thermal stability of the composites have been evaluated using the DSC data. Activation energy of the composites has been evaluated by two different methods and compared. TPS technique has been employed to measure the effective thermal diffusivity and thermal conductivity of the composites. Thermal conductivity of the fibers has been evaluated by a theoretical model and compared.

References

  1. Jarukumjorn K. and Suppakarn N. (2009)., Effect of glass fiber hybridization on properties of sisal fiber polypropylene composites., Composites Part B: Engineering, 40(7), 623-627.
  2. Haque M.M., Hasan M., Islam M.S. and Ali M.E. (2009)., Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites., Bioresource Technology, 100(20), 4903-4906.
  3. Shinoj S., Visvanathan R., Panigrahi S. and Kochubabu M. (2011)., Oil palm fiber (OPF) and its composites: A review., Industrial Crops and Products, 33(1), 7-22.
  4. Brahmakumar M., Pavithran C. and Pillai R.M. (2005)., Coconut Fibre Reinforced Polyethylene Composites: effect of natural waxy surface layer of the fibre on fibre/matrix interfacial bonding and strength of composites., Comp. Sci. Tech., 65(3), 563-569.
  5. Jacob M., Thomas S. and Varughese K.T. (2004)., Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites., Comp. Sci. Tech., 64(7), 955-965.
  6. Sreekala M.S., Kumaran M.G. and Thomas S. (1997)., Oil Palm Fibres: Morphology, Chemical Composition, Surface Modification, and Mechanical Properties., J. Appl. Polym. Sci., 66(5), 821-835.
  7. Sreekala M.S., Thomas S. and Neelakantan R.N. (1996)., Utilization of short oil palm empty fruit bunch fiber (opefb) as a reinforcement in phenol- formaldehyde resins: studies on mechanical properties., J. Polym. Eng., 16(4), 265-294.
  8. Joseph K., Pavithran C. and Thomas S. (1995)., Effect of ageing on the physical and mechanical properties of short sisal fibre reinforced polyethylene composites., Com. Sci. Tech., 53(1), 99-110.
  9. Hancox N.L. (1981)., Fiber Composites-Hybrid Materials., Applied Science, Publishers Ltd. London.
  10. Vinson J.R. and Chou Tsu-Wei (1975)., Composite Materials and Their Uses in Structures., Applied Science Publishers Ltd. London.
  11. Minges M. (1989)., Electronic Materials Handbook., ASM Int. Publication.
  12. Agrawal, Richa Saxena, N.S., Sharma K.B., Sreekala M.S. and Thomas S. (1999)., Thermal conductivity and thermal diffusivity of Palm fiber reinforced binary phenolformaldehyde composites., Indian Jr. Pure& Appl. Phys., 37, 865-869.
  13. Starink M.J. (2003)., The determination of activation energy from linear heating rate experiments: a comparision of accuracy of isiconversion methods., Thermochim. Acta, 404(1), 163-176.
  14. Kissinger H.E. (1956)., Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis., J Res NBS, 57(4), 217-221.
  15. Matusita K., Komatusa T. and Yokota R. (1984)., Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials., J. Mat. Sci., 19(1), 291-296.
  16. Mahadevan S., Giridhar A. and Singh A.K. (1986)., Calorimetric measurements on As–Sb–Se glasses., J. Non-Cryst Solids., 88(1), 11-34.
  17. Hruby A. (1972)., Evaluation of glass-forming tendency by means of DTA., Czech. J. Phys. B, 22(11), 1187-1193.
  18. Agari Y., Ueda A., Tanaka M. and Nagai S. (1993)., Thermal conductivity of a polymer composite., J. Appl. Polym. Sci., 49(9), 1625-1634.
  19. Agari Y., Nagai S., Uno T. and Tanaka M. (1987)., Thermal conductivity of a polymer composite filled with mixtures of particles., J. Appl. Polym. Sci., 34(4), 1429-1437.