6th International Young Scientist Congress (IYSC-2020) will be Postponed to 8th and 9th May 2021 Due to COVID-19. 10th International Science Congress (ISC-2020).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Effect of temperature on the structural, morphological and magnetic properties of magnesium ferrite nanoparticles

Author Affiliations

  • 1Department of Physics, Panjab University, Chandigarh-160014, India
  • 2Department of Physics, Panjab University, Chandigarh-160014, India

Res. J. Recent Sci., Volume 6, Issue (2), Pages 1-9, February,2 (2017)

Abstract

In the present paper, magnesium ferrite nanoparticles were synthesized by conventional sol–gel method. The as-synthesized material was calcined at different temperatures and their structural, magnetic, FTIR, morphological and compositional analyses were studied. XRD patterns revealed formation of cubic structured magnesium ferrite nanoparticles. With the increase in calcination temperature, the crystallite size increased and crystallinity improved. No peaks corresponding to any impurity or additional phases were detected; this was also confirmed by the FTIR spectra. With increase in the temperature, a gradual disappearance of C-H, hydroxylate and carboxylate groups occurred, while Fe-O bond became prominent. The magnetic analysis done by VSM revealed superparamagnetic behavior of the calcined nanoparticles. With increase in temperature, magnetic saturation, coercivity, remanent magnetization and magnetic squareness value increased, owing to improved crystallization and bigger particle size. Considering biomedical application, this is an undesired feature as more the squareness value, lesser is the superparamagnetic character. The sample calcined at 500°C was found to be the most suitable for carrying out further investigations. Its morphological and compositional analysis revealed its spherical agglomerated formation with the desired elemental composition. In vitro cytotoxicity test on HaCaT cells using MTT (3-(4, 5-Dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide, a tetrazole) assay revealed the concentration-dependent cell-viability of the synthesized magnesium ferrite nanoparticles. The spherical formation, superparamagnetism and cell-viability (at lower concentrations) allows for its successful application in biomedicine.

References

  1. Gupta A.K. and Gupta M. (2005)., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications., Biomater, 26(18), 3995–4021.
  2. Pankhurst Q.A., Connolly J., Jones S.K. and Dobson J. (2003)., Applications of magnetic nanoparticles in biomedicine., J. Phys. D: Appl. Phys. 36(13), R167–R181.
  3. Khot V.M., Salunkhe A.B., Phadatare M.R. and Pawar S.H. (2012)., Formation, microstructure and magnetic properties of nanocrystalline MgFe2O4., Mater. Chem. Phy. 132(2), 782– 787.
  4. Tomitaka A., Hirukawa A., Yamada T., Morishita S. and Takemura Y. (2009)., Biocompatibility of various ferrite nanoparticles evaluated by in vitro cytotoxicity assays using HeLa cells., J. Magn. Magn. Mater., 321(10) 1482–1484.
  5. Zhang J., Rana S., Srivastava R.S. and Misra R.D.K. (2008)., On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles., Acta Biomater, 4(1), 40–48.
  6. Yallapu M.M., Othman S.F., Curtis E.T., Gupta B.K., Jaggi M. and Chauhan S.C. (2011)., Multi- functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy., Biomaterials, 32(7), 1890–1905.
  7. Yin H., Too H.P. and Chow G.M. (2005)., The effects of particle size and surface coating on the cytotoxicity of nickel ferrite., Biomaterials. 26(29), 5818–5826.
  8. Rana S., Gallo A., Srivastava R.S. and Misra R.D.K. (2007)., On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: functionalization, conjugation and drug release kinetics., Acta Biomaterialia, 3(2), 233–242.
  9. Khanna L. and Verma N.K. (2013)., Size-dependent magnetic properties of calcium ferrite nanoparticles., J. Magn.Magn. Mater., 336, 1-7.
  10. Khanna L. and Verma N.K. (2013)., PEG/CaFe2O4 nanocomposite: Structural, morphological, magnetic and thermal analyses., Physica B, 427, 68–75.
  11. Khanna L. and Verma N.K. (2014)., Biocompatibility and superparamagnetism in novel silica/CaFe2O4 nanocomposite., Mater. Lett., 128, 376-379.
  12. Khanna L. and Verma N.K. (2013)., Synthesis, characterization and invitro cytotoxicity study of calcium ferrite nanoparticles., Mater. Sci. Semicond. Process., 16(6), 1842–1848.
  13. Khanna L. and Verma N.K. (2015)., Study on novel, superparamagnetic and biocompatible PEG/KFeO2 nanocomposite., J. Appl. Biomed., 13(1), 23-32.
  14. Khanna L. and Verma N.K. (2013)., Silica/potassium ferrite nanocomposite: Structural, morphological, magnetic, thermal and in vitro cytotoxicity analysis., Mater. Sci. Eng. B, 178(18), 1230-1239.
  15. Khanna L. and Verma N.K. (2014)., Synthesis, characterization and biocompatibility of potassium ferrite nanoparticles., J. Mater. Sci. Tech., 30(1), 30-36.
  16. Mohapatra S., Rout S.R., Maiti S., Maiti T.K. and Panda A.B. (2011)., Monodisperse mesoporous cobalt ferrite nanoparticles: synthesis and application in targeted delivery of antitumor drugs., J. Mater. Chem., 21(25), 9185-9193.
  17. Baldi G., Bonacchi D., Franchini M.C., Gentili D., Lorenzi G., Ricci A. and Ravagli C. (2007)., Synthesis and coating of cobalt ferrite nanoparticles: a first step toward the obtainment of new magnetic nanocarriers., Langmuir 23(7), 4026–4028.
  18. Rana S., Philip J. and Raj B. (2010)., Micelle based synthesis of cobalt ferrite nanoparticles and its characterization using Fourier transform infrared transmission spectrometry and thermogravimetry., Mater. Chem. Phys., 124(1), 264–269.
  19. Yang H., Zhang C., Shi X., Hu H., Du X., Fang Y., Ma Y., Wu H. and Yang S. (2010)., Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging., Biomater., 31(13), 3667–3673.
  20. Leung K.C.F. and Wang Y.X.J. (2010)., Nanowires Science and Technology in N. Lupu (Ed.)., InTech, Croatia, 331–344.
  21. Ferreira da Silva M.G. and Valente M.A. (2012)., Magnesium ferrite nanoparticles inserted in a glass matrix— Microstructure and magnetic properties., Mater. Chem. Phy., 132(2), 264-272.
  22. Foroughi F., Hassanzadeh-Tabrizi S.A. and Bigham A. (2016)., In situ microemulsion synthesis of hydroxyapatite-MgFe2O4 nanocomposite as a magnetic drug delivery system., Mater. Sci. Eng. C, 68, 774-779.
  23. Nedim Ay A., Konuk D. and Karan B.Z. (2011)., Magnetic nanocomposites with drug-intercalated layered double hydroxide shell supported on commercial magnetite and laboratory-made magnesium ferrite core materials., Mater. Sci.Eng. C 31(5), 851–857.
  24. Nonkumwong J., Pakawanit P., Wipatanawin A., Jantaratana P., Ananta S. and Srisombat L. (2016)., Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles., Mater. Sci. Eng. C, 61,123–132.
  25. Hyun S.W., Kim H.J., Park C.S., Kang K.S. and Kim C.S. (2009)., Synthesis and Size Dependent Properties of Magnesium Ferrites., IEEE Transactions on Magnetics, 45(6), 2551-2553.
  26. Huang Y., Tang Y., Wang J. and Chen Q. (2006)., Synthesis of MgFe2O4 nanocrystallites under mild conditions., Mater. Chem. Phy., 97(2), 394-397.
  27. Hussein S.I., Elkady A.S., Rashad M.M., Mostafa A.G. and Megahid R.M. (2015)., Structural and magnetic properties of magnesium ferrite nanoparticles prepared via EDTA-based sol–gel reaction., J. Magn. Magn. Mater., 379, 9-15.
  28. Chandradass J. and Kim K.H. (2011)., Solvent effects in the synthesis of MgFe2O4 nanopowders by reverse micelle processing., J. Alloys Compds., 509(5), L59-L62.
  29. Pradeep A., Priyadharsini P. and Chandrasekaran G. (2008)., Sol– gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study., J. Magn. Magn. Mater., 320(21), 2774–-2779.
  30. Das H., Sakamoto N., Aono H., Shinozaki K., Suzuki H. and Wakiya N. (2015)., Investigations of superparamagnetism in magnesium ferrite nano-sphere synthesized by ultrasonic spray pyrolysistechnique for hyperthermia application., J. Magn. Magn. Mater., 392, 91–100.
  31. Chandradass J., Jadhav A.H., Kim K.H. and Kim H. (2012)., Influence of processing methodology on the structural and magnetic behavior of MgFe2O4 nanopowders., J. Alloys Compds., 517, 164-169.
  32. Sivakumar N., Narayanasamy A., Greneche J.M., Murugaraj R. and Lee Y.S. (2010)., Electrical and magnetic behaviour of nanostructured MgFe2O4 spinel ferrite., J. Alloys Compd., 504(2), 395-402.
  33. Candeia R.A., Bernardi M.I.B., Longo E., Santos I.M.G. and Souza A.G. (2004)., Synthesis and characterization of spinel pigment CaFe2O4 obtained by the polymeric precursor method., Mater. Lett., 58(5), 569-572.
  34. Thant A.A., Srimala S., Kaung P., Itoh M., Radzali O. and Fauzi M.N.A. (2010)., Low temperature synthesis of MgFe2O4 soft ferrite nanocrystallites., J. Aust. Ceramic Society, 46, 11-14.
  35. Wyrzykowski D., Hebanowska E., Wiczk G.N., Makowski M. and Chmurzynski L. (2011)., Thermal behaviour of citric acid and isomeric aconitic acids., J. Thermal Analysis Calorimetry, 104(2), 731-735.
  36. Preet S. Pandey S.K., Saini N., Koul A. and Rishi P. (2015)., Nisin augments doxorubicin permeabilization and ameliorates signaling cascade during skin carcinogenesis., Transl Med., 6, 161.
  37. Prashant C., Dipak M., Yang C.T., Chuang K.H., Jun D. and Feng S.S. (2010)., Superparamagnetic iron oxide loaded poly (lactic acid)-D-a-tocopherol polyethylene glycol 1000 succinate copolymer nanoparticles as MRI contrast agent., Biomater., 31(21), 5588-5597.
  38. Franco V., Conde C.F. and Conde A. (2005)., Relationship between coercivity and magnetic moment of superparamagnetic particles with dipolar interaction., Phys. Rev. B, 72(17), 1-10.
  39. Schulz D.L., Sailer R.A. and Caruso A.N. (2008)., Superparamagnetic Transition Metal Iron Oxygen nanoparticles., U.S. Patent No. 20090194733.
  40. Veiseh O., Gunn J.W. and Zhang M. (2010)., Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging., Adv. Drug Deliv. Rev., 62(3), 284-304.
  41. Rastogi R., Gulati N., Kotnala R.K., Sharma U., Jayasundar R. and Koul V. (2011)., Evaluation of folate conjugated pegylated thermosensitive magnetic nanocomposites for tumor imaging and therapy., Colloids Surf. B, 82(1), 160–167.
  42. Mahmoudi M., Sant S., Wang B., Laurent S. and Sen T. (2011)., Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy., Adv. Drug Deliv. Rev., 63(1), 24-46.