9th International Science Congress (ISC-2019).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Applications of Lipopeptide(s) from a Bacillus sp: An Overview

Author Affiliations

  • 1Department of Biotechnology Himachal Pradesh University Summer Hill, Shimla, India
  • 2Department of Biotechnology Himachal Pradesh University Summer Hill, Shimla, India
  • 3Department of Biotechnology Himachal Pradesh University Summer Hill, Shimla, India
  • 4Department of Biotechnology Himachal Pradesh University Summer Hill, Shimla, India

Res. J. Recent Sci., Volume 5, Issue (11), Pages 50-54, November,2 (2016)

Abstract

In the recent years, continuous and excess use of chemical pesticides in the field has created an adverse ecological balance that affected the whole environment. Most of the part of crops is destroyed by the phytopathogens such as fungi, bacteria and yeast causes to economic losses to the farmers. Extensive use of the chemicals for controlling the plant diseases in the field has unbalanced the delicate environmental harmony of the fertile land, causes soil water contamination, evolution of new races of microorganisms and risk for humans health. The constant and continue demand for new bio-therapeutic agents with an effective mode of action has activated the intensive/deep research in the field of diverse natural bioactive molecules having antimicrobial activity. Among these active molecules, lipopeptide(s) are a unique class of bio-active secondary metabolites with increasing scientific, therapeutic and biotechnological interest. Bacillus subtilis produced mainly a four different types of lipopeptides with a potential for biotechnological and biopharmaceutical applications. Among the all Lipopeptide(s) classes, Iturin and Surfactin shows attractive antibiotic properties. The main family of the microbial lipopeptide(s) is surfactin, which mainly originated from the B. subtilis. These properties of the surfactin make a momemtous drug (surfactin) for the resolution of a number of global issues in medicine. Cancer and phytopathogens are the major problem in the today’s scenario. The bacterial lipopeptide(s) have lower toxicity for plants and animals, high biodegradability, low irritancy and compatibility with human skin.

References

  1. Meena K.R. and Kanwar S.S. (2015)., Lipopeptides as the Antifungal and Antibacterial Agents: Applications in Food Safety and Therapeutics., Bio Med. Res. Int., 1-9, http://dx.doi.org/10.1155/2015/473050.
  2. Ongena M. and Jacques P. (2008)., Bacillus Lipopeptides: Versatile Weapons for Plant Disease Biocontrol., Trends Microbiol., 16(3), 115-125, doi: 10.1016/j.tim.2007.12.009.
  3. Cameotra S.S. and Makkar R.S. (2004)., Recent Applications of Biosurfactants as Biological and Immunological Molecules., Curr. Opin. Microbiol., 7(3), 262-266, doi: 10.1016/j.mib.2004.04.006
  4. Mandal S.M., Sharma S., Pinnaka A.K., Kumari A. and Korpole S. (2013)., Isolation and Characterization of Diverse Antimicrobial Lipopeptides Produced by Citrobacter and Enterobacter., BMC. Microbiol., 13, 152, doi: 10.1186/1471-2180-13-152.
  5. Aranda F.J., Teruel J.A. and Ortiz A. (2005)., Further Aspects on the Hemolytic Activity of the Antibiotic Lipopeptide Iturin A., Biochim et Biophys Acta., 1713(1), 51-56. doi:10.1016/j.bbamem.2005.05.003.
  6. Tsuge K., Akiyama T. and Shoda M. (2001)., Cloning, Sequencing, and Characterization of the Iturin A Operon., J. Bacteriol., 183(21), 6265-6273, doi:10.1128/JB.183.21.6265-6273.2001.
  7. Seydlov´a G., Cabala R. and Svobodov´a J. (2011)., Biomedical Engineering, Trends, Research and Technologies., Surfactin - Novel Solutions for Global Issues, Rijeka, Croatia, 13, 306-330, ISBN 978-953-307-514-3.
  8. Korenblum E., Araujo L.V.De and Guimar˜aes CR. (2012)., Purification and Characterization of a Surfactin-like Molecule Produced by Bacillus sp. H2O-1 and its Antagonistic Effect Against Sulfate Reducing Bacteria., BMC Microbiol., 12, 252, doi: 10.1186/1471-2180-12-252.
  9. Tang J.S., Gao H. and Hong K. (2007)., Complete Assignments of 1H and 13C NMR Spectral Data of Nine Surfactin Isomers., Magn. Reson in Chem., 45, 792-796, doi: 10.1002/mrc.2048.
  10. Zou A., Liu J., Garamus V.M, Yang Y., Willumeit R. and Mu B. (2010)., Micellization Activity of the Natural Lipopeptide [Glu1, Asp5] Surfactin-C15 in Aqueous Solution., J. Phys.Chem. B., 114(8), 2712-2718.
  11. Hofemeister J., Conard B., Feesche J., Hofemeister B., Kuchryava N., Steinborn G., Franke P., Grammel N., Zwintscher A., Leenders F., Hintzeroth G. and Vater J. (2004)., Genetic Analysis of the Biosynthesis of Nonribosomal Peptide- and Polyketide-like Antibiotics, Iron Uptake and Biofilm Formation by Bacillus subtilis A1/3., Mol. Genet. Genomics, 272(4), 363-378, doi:10.1007/s00438-004-1056-y.
  12. Koumoutsi A., Hua-Chen X., Henne A., Liesegang H., Hitzeroth G., Franke P., Vater J. and Borris R. (2004)., Structural and Functional Characterization of Gene Clusters Directing Nonribosomal Synthesis of Bioactive Cyclic Lipopeptides in Bacillus amyloliquifaciens strain FZB42., J. Bacteriol., 186, 1084-1096, doi:10.1128/JB.186.4.1084-1096.2004
  13. Cho S.J., Lee S.K., Cha B.J., Kim Y.H. and Shin K.S. (2003)., Detection and Characterization of the Gloeosporiumgloeosporioides Growth Inhibitory Compound Iturin A from Bacillus subtilis Strain KS03., FEMS Microbiol. Lett., 223(1), 47-51.
  14. Singh A., VanHamme J.D. and Ward O.P. (2007)., Surfactants in Microbiology and Biotechnology: Part 2. Application Aspects., Biotechnology Advances, 25(1), 99-121, http://dx.doi.org/10.1016/j.biotech adv.2006.10.004.
  15. Nitschke M. and Costa S.G.V.A. (2007)., Bio surfactants in food industry., Trends in Food Science and Technology, 18(5), 252 -259, http://dx.doi.org/10.1016/ j.tifs.2007.01.002.
  16. Cameotra S.S. and Makkar R.S. (2010)., Biosurfactant Enhanced Bioremediation of Hydrophobic Pollutants., Pure. Appl. Chem, 82(1), 97-16, doi:10.1351/PAC-CON-09-02-10.
  17. Rodrigues L., Banat I.B., Teixera J. and Oliveira R. (2006)., Biosurfactants: Potential Applications in Medicine., J. Anti-microb. Chemother, 57(4), 609- 618.
  18. Kanlayavattanakul M. and Lourith N. (2010)., Lipopeptides in Cosmetics., Int. J. Cosmet. Sci., 32(1), 1-8, doi: 10.1111/j.1468-2494.2009.00543.x.
  19. Sumi H., Sasaki T., Yatagai C. and Kozaki Y. (2000)., Determination and Properties of the Fibrinolysis Accelerating Substance (FAS) in Japanese Fermented Soybean Natto., Nippon Nogei Kagakukaishi, 74(11), 1259-1264, doi: 10.1271/nogeikagaku1924.74.1259.
  20. Cho K.M., Math R.K., Hong S.Y., SMd A.I., Mandan D.K., Cho J.J., Yun M.G., Kim J.M. and Yun H.D. (2009)., Iturin Produced by Bacillus pumilus HY1 from Korean Soybean Sauce (kanjang) Inhibits Growth of Afflation Producing Fungi., Food Control, 20(4), 402-406, http://dx.doi.org/10.1016/j.foodcont.2008.07.010.
  21. Thakore Y. (2006)., The Biopesticide Market for Global Agricultural Use., Industrial Biotechnology, 2(3), 194-208, doi:10.1089/ind.2006.2.194.
  22. Onega M., Jacques P., Toure Y., Destain J., Jabrane A. and Thonart P. (2005)., Involvement of Fengycin Type Lipopeptides in the Multifaceted Biocontrol Potential of Bacillus subtilis., Appl. Microbiol. Biotechnol., 69(1), 29-38.
  23. Bais H.P, Fall R. and Vivanco J.M. (2004)., Biocontrol of Bacillus subtilis Against Infection of Arabidopsis Roots by Pseudomonas syringae is Facilitated by Biofilm Formation and Surfactin Production., Plant .Physiol., 134(1), 307-319, doi: 10.1104/pp.103.028712.
  24. Romero D., de. Antonio, Vicente and Rakotoaly R.H. et. al. (2007)., The Iturin and Fengycin Families of Lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca., Mol Plant Microb Interact, 20(4), 430-440, doi: 10.1094/mpmi-20-4-0430.
  25. Preecha C., Sadowsky M.J. and Prathuangwong S. (2010)., Lipopeptide Surfactin Produced by Bacillus amyloliquefaciens KPS46 is required for Biocontrol Efficacy against Xanthomonas axonopodis pv. Glycines., Natural Science., 44(1), 84-99.
  26. Alvarez F, Castro M., Prı´ncipe A., Borioli G., Fischer S., Mori G. and Jofre E. (2012)., The Plant-Associated Bacillus amyloliquefaciens Strains MEP218 and ARP23 Capable of Producing the Cyclic Lipopeptides Iturin or Surfactin and Fengycin are Effective in Biocontrol of Sclerotinia Stem Rot Disease., J. Appl. Microbiol., 112(1), 159-157, doi: 10.1111/j.1365-2672.2011.05182.x.
  27. Plaza G.A., Chojniak J. and Banat I.M. (2014)., Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles., Int. J. Mol. Sci., 15(8), 13720-13737, doi: 10.3390/ijms150813720.
  28. Reddy A.S., Chen C.Y., Baker S.C., Chen C.C. and Jean J.C. et. al. (2009)., Synthesis of Silver Nanoparticles Using Surfactin: A Biosurfactant as Stabilizing Agent., Materials .Lett., 63(15), 1227-1230, http://dx.doi.org/10.1016/ j.matlet.2009.02.028.
  29. Reddy A.S., Kuo Y.H., Atla S.B., Chen C.Y. and Chen C.C. et al. (2011)., Low Temperature Synthesis of Rose-like ZnO Nanostructures Using Surfactin and Their Photocatalytic Activity., J. Nanosci Nanotechnol, 11(6), 5034-5041.
  30. Singh B.R., Dwivedi S., Al-Khedhairy A.A. and Musarrat (2011)., Synthesis of Stable Cadmium Sulfide Nanoparticles Using Surfactin Produced by Bacillus amyloliquifaciens strain KSU-109., Colloids Surf., B: Biointerfaces., 85(2), 207-213, doi: 10.1016/j.colsurfb.2011.02.030.
  31. Infante D.C., Horton H.F., Byrne M.C. and Kamradt T. (2000)., Microbial Lipopeptides Induce the Production of IL-17 in Th Cells., J. Immunol., 165(11), 6107-6115.
  32. Das P., Mukherjee S. and Sen R. (2008)., Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans., J. Appl.Microbiol., 104, 1675-1684