
 Research Journal of Recent Sciences ___ ISSN 2277-2502

 Vol. 4(2), 72-82, February (2015) Res.J.Recent Sci.

 International Science Congress Association 72

Comparative Analysis of Packet Filtering Algorithms with Implementation

Hediyeh Amir Jahanshahi Sistani
1
, Sayyed Mehdi Poustchi Amin

2
and Haridas Acharya

3

1,2Department of Computer Studies and Research, Symbiosis International University, Pune, INDIA
3Allana Institute of Management Science, Pune University, Pune, INDIA

Available online at: www.isca.in, www.isca.me
Received 6th January 2014, revised 16th March 2014, accepted 15th June2014

Abstract

Packet classification is an essential part of networking tools like firewalls and routers. All the packets have to be categorized

systematically to facilitate broadband internet facilities, as well as a host of applications, embracing Internet gaming, Video

on Demand (VoD), TV/Radio and e-businesses, which unceasingly necessitate an cutting-edge intensity of transmission

bandwidth, meticulous Quality of Service (QoS) and elaborate security. This dissertation presents a fair appraisal and

analysis of packet classification algorithms, BV, HiCuts and DimCut which are constructed on a decision tree structure. The

assessment has been piloted on procedures based on analogous principles and design selections. Performance capacities

have been obtained by assigning the applied classifiers in an identical set-up of trial environments. Our core involvement in

this effort is an unbiased comparison with mutual norms and assessment cases, by affording a standardized appraisal of the

three classification algorithms. This work stresses the evaluation of high performance packet classification systems, which

are considered necessary to facilitate futuristic routers and switching systems to achieve combat security risks in a very good

speed environment. In this study, we have elucidated our erstwhile recommended DimCut packet classification algorithm,

and compared it with the HiCut and BV decision tree packet classification algorithms. The proposed improvements have

been corroborated by simulated trials.

Keywords: Firewalls, rules, packet filtering, bit vector, hicut, dimcut.

Introduction

Packet classifiers are comprehensively employed for an array of
network applications, many of which are concurrent to quality
of service (QoS) requirements, and, consequently, in diverse
network gadgets. High performance packet classification
algorithms are of substantial benefits to both academics and
industrialists. Large scale packet classification has become a
key element of network security systems and Firewalls needing
to classify packets, where the speed of decision making, to
accept or reject, is of utmost significance.

The foremost task of a firewall is to scrutinize and select the
network traffic in accordance with the designated security
policy. Typically, the security policy and rules are encoded
manually by a system administrator to stipulate an action for
traffic flows, and, therefore, specify how to process the traffic.
The security policy system spells out the progression of the
network traffic1.

Packet classifiers are extensively employed in IP networking
where procedures customarily comprise one or more packet
header fields. Each rule R consists of i components, where each
component R [i] relates to a definite header field. When there is
more than one field, the classifier is termed as multi field. A set
of programme rules regulate the approval or rejection of
packets. A packet classifier must compare header fields of each
inward packet against a set of rules2-4. The packet header fields

generally consist of the source IP address, the destination IP
address, the transport protocol, the source port, and the
destination port, which can be an exact prefix and range. Each
filter R[i] has an allied action that governs how a packet P is
handled if P matches R[i]. Filters can overlap; hence, a packet
can match multiple filters, but the one with the highest priority
among all the equivalent filters is selected as the best matching
filter. Customarily, the filter’s position in an ordered list of
filters defines its priority.

Due to the intricacy of the search, packet classification is every
so often a performance holdup in network framework; therefore,
it has gathered considerable interest in the research diaspora.
Broadly, there have been two major lines of research to tackle
this problem: algorithmic and architectural. Several scholars
have propounded a variety of algorithmic solutions, innovative
algorithms as well as improvements for the contemporary
algorithms However, before exploring new options, it is vital to
comprehend the existing algorithms under uniform test
conditions and a common set of benchmark standards2,5.

In this study, we have elucidated our erstwhile recommended
DimCut packet classification algorithm, and compared it with
the HiCut and BV decision tree-based packet classification
algorithms. The proposed improvements have been corroborated
by simulated trials.
The rest of the paper is organized as follows: Section One
reviews some related works on the various algorithms studied to

Research Journal of Recent Sciences ___ ISSN 2277-2502

Vol. 4(2), 72-82, February (2015) Res.J.Recent Sci

 International Science Congress Association 73

capture their advantages and disadvantages. Section Two
explains the BV, HiCut and DimCut algorithms. Section Three
deals with the implementation objectives. Section Four tabulates
and examines the results of the comparative assessment of our
experiments and findings. Section Five is a summary of our
contributions and conclusion.

Related work: A packet classifier must correlate header fields
of all incoming packets against a set of rules containing the
security policies. Packet classification aims at pursuing the
proper matching filter for a given packet header. In the
multidimensional packet classification, trade memory is used for
better speed and performance. When the number of rules
increases, the result is inadequate, either towards search time or
memory usage. Several researchers in industrial and academic
fields have been endeavoring to resolve these problems, but
packet classification problem continues to be a major challenge
in network processing 6-12.

The bit vector search algorithm is stemmed on the core of filter
set intersecting, as it is simpler to pair a part of filter at a time
than to match up the whole filter totally. The packet header can
be fragmented into substrings and matched with a subset of
rules, where the intersection will provide a rule to match the
whole packet header13. As against this, the Cross-Producting
algorithm circuitously encodes the subsections of filters into
indices that are applied to develop the keys to the Cross-
Producting table. These algorithms are extremely swift and their
data is principally established by the speed of partial header
lookups. However, they can consume needless amounts of
memory. To offset this, the data structure of ‘Grid of Tries’
algorithm is spread out into two fields, and utilizes a decision
tree for packet classification on the source and destination
address prefixes. The Cross-Producting, together with a caching
technique, is recommended for multiple fields and larger
classifiers with non-deterministic classification time8.

Baboescu, Singh, and Varghese are researchers who have
proposed Extended Grid-of-Tries (EGT) which fundamentally
withstands multiple fields. It is notable that the EGT modifies
the switch pointers to jump pointers that maneuver the search to
all feasible matching filters, rather than only to the filters with
the longest matching destination and source address prefixes14.
Woo’s modular packet classification, Multidimensional Cuttings
(HyperCuts) and Hierarchical Intelligent Cuttings (HiCuts),
employs filter set splitting method in algorithms, where the
preprocessing of rule sets utilizes the strategy of cutting of the
multi-dimensional space recursively to construct the decision
tree2,3,14.

Tuple Space Search algorithm is established on filter set
grouping, where filters in a set are reorganized into distinct
subsets with explicit conventional features. Corresponding
lookups can be operated in each of these smaller subsets. The
most appropriate match is extricated from the results of all the
lookups. Lookups in each tuple can be systematized by means

of a basic hash table. When each tuple is ascribed a hash table,
the lookup can simply entreat all the hash tables to discover the
most useful matching filter. The numbers of tuples govern the
storage and look up time, and to arrive at the conflict-free filters
feature one can employ the binary search with the objective of
minimizing the number of hash queries. The Compressed Tuple
Space Search algorithm also uses this fundamental method15,16.

A study of the existing algorithms indicates that a single
algorithm can never handle all the situations seamlessly, as
every technique has its own advantages and disadvantages.
Therefore, understanding the problem from a high level
perspective can provide insights for additional improvements.
Many researchers have examined and illustrated the problems of
packet classification, and several solution algorithms have been
suggested, but it still remains problematic, leaving innumerable
opportunities to improve algorithm performance in the existing
algorithms1,17,18.

Bit Vector, HiCut and DimCut Algorithms: Bit Vector: The
linear understanding of packet classification divulges some
basic concepts in what manner the data configurations can be
created and how to characterize packet filters. In geometric
view, several algorithms take on either ‘cutting’ or ‘projection’
techniques in multidimensional space to preprocess filter sets.
The ‘cutting technique’ portions the space into smaller sections
at designated vantage points. Each sub-section, therefore,
encompasses a smaller number of filters. This procedure helps
to contract the latitude of the search. The ‘projection technique’
plans the end-points of ranges to each dimensional axis. Two
contiguous points outline an elementary intermission that is
completely encompassed by a distinctive subset of filters.
‘Projection technique’ has advanced granularity than the
‘cutting technique’ and can, therefore, distinguish filters in a
superior manner. However, locating an elementary interval by
this technique is more challenging than tracing a sub-region by
the ‘cutting’ technique. The decision tree-based algorithms
typically apply the ‘cutting’ technique, while the
decomposition-based algorithms customarily utilize the
‘projection’ technique.

The Bit Vector algorithm is a breakdown-based algorithm that
depicts the subset of filters for each partial match by means of
bit vectors. The filter set intersecting concept is that it is easier
to match a partial filter, rather than the entire filter, at one time.
Therefore, when the packet header is segregated into a set of
substrings, then each substring can match a subset of filters. The
intersection of these subsets is precisely the filters matching the
total packet header13.

BV employs a geometric view of the filter set and draws filters
into d-dimensional space. The projections from the “edges” of
the d-dimensional rectangles, identified by the filters, express
elementary intervals on the axes. For each elementary interval
on the axis, we define an N-bit bit-vector. Each bit position
tallies with a filter in the filter set, and is prioritized. All bit-

Research Journal of Recent Sciences ___ ISSN 2277-2502

Vol. 4(2), 72-82, February (2015) Res.J.Recent Sci

 International Science Congress Association 74

vectors are initialized to all ‘0’s. For each bit-vector, the bits are
set analogous to the filters that overlap the allied elementary
interval. For each dimension d, an independent data structure is
constructed, which detects the elementary interval covering a
given point, and then returns the bit-vector related to that
interval. Once all the bit-vectors are computed, the d-data
structures are constructed and searched with the corresponding
packet fields independently to identify all d-bit vectors from the
field searches. The most significant ‘1’ bit in the result
symbolizes the highest priority matching filter. Multiple
matches are easily reinforced by examining the most significant
set of bits in the resultant bit vector. Consider the example in 2D
filter set; shown in figure-1, each filter appears to be a rectangle
on this 2D plane. The preprocessing step of the algorithm
projects the edges of the rectangles to the corresponding axis,
means project the end points of each rectangle to the axis, and
any two adjacent projection points on an axis defines an
elementary interval which is fully covered by a set of filters. In
the example shown, the three rectangles create six intervals in
each axis. In the worst case, the projection results in maximum
of (2n + 1) intervals on each dimension. Then associate a bitmap
with each dimension. A bit in the bitmap is set, if the
corresponding rectangle overlaps with the interval that the
bitmap corresponds to. Since there are 3 filters in total, each bit
vector is 3-bit wide. The bit 0 is for the filter R1, the bit 1 is for
the filter R2, and so on, as is shown in figure 1. To implement
the BV, we used the binary search technique to build the single
field lookup data structure for retrieving the bit vectors.

The Briefed BV Algorithm: i. Read rules and create an Array
pointer structure, ii. For each rule: For each field : project the
end points, set any two adjacent projection points as an
elementary interval which is fully covered by a set of rules, Set
the bit vectors for each elementary intervals which has n number
of bits equal to number of rules(each bit represent a rule), iii.
For each individual field of all rules construct the balanced
binary search tree of elementary intervals which the leaves are
the bit Vectors, iv. Use Search part: Read Packets: For each
Packet, v. For each individual field traverse the corresponded
Binary search tree and return retrieved Bit vector, Do bitwise
AND operation on these bit vectors, Find the bits number with
value1 as the rule id of the specific matched rules, Select the
higher priority one as a target, Act as its action. End

HiCut: The packet classification algorithm, Hierarchical
Intelligent Cuttings proposed by Gupta and McKeown. The
concept of “cutting” emanates from observing the packet
classification problem geometrically as shown in figure-2.
HiCuts preprocesses the rule set for constructing a decision tree,
with its leaves encompassing a specific number of rules. Packet
header fields are used to navigate the decision tree until a leaf is
reached. The rules stored in that leaf are then linearly explored
for a match. HiCuts uses only four fields (dimension) to
construct the decision tree. Selecting a decision principle is
analogous to selecting a partitioning, or “cutting”, of the space.
The algorithm uses various heuristics to select decision

principles at each node that minimize the depth of the tree while
monitoring the amount of memory used; more cuts at each level
will result in a stouter and shorter decision tree. The number of
cuts is determined by the local cutting circumstances and a
global configurable space measure factor, spmf. The largest
possible number of cuts is chosen, as long as the following
inequality is satisfied2. spmf * number of rules at node r ≥ ∑
number of rules at each child of node r + number of cuts.

Figure-1

Shows the Projection partitiong techniqe

Figure-2

Shows the Cutting partitiong techniqe

The dimension to cut along each decision tree node is also
critical to the algorithm performance. The algorithm gives four
options. Neither one is consistently better than the others for
different rule sets. The threshold is the maximum number of
rules allowable in a leaf node. A higher ceiling can play a role in
shrinking the size and depth of the decision tree, but will take a
longer linear search time. Some enhancements, like redundancy
exclusion and child node salvaging, can also be realized7.
However, the results are not similar for diverse rule sets and
options. In several situations, a few recommended algorithm
options do not turn out well at all. Put into practice, the handler
must delve into all routes and possibilities for ascertaining the
most applicable one12.

DimCut: The DimCut algorithm is fortified with certain
alterations and enhancements on the HiCuts algorithm. DimCut

Research Journal of Recent Sciences ___ ISSN 2277-2502

Vol. 4(2), 72-82, February (2015) Res.J.Recent Sci

 International Science Congress Association 75

is a packet classification algorithm, based on a decision tree, and
using Recursive Dimensional Cutting. It has two disconnected
levels, pre-processing level (tree construction) and search level.
DimCut deals with the geometric view of the packet
classification problem, where each rule expresses a d-
dimensional rectangle in d-dimensional space, and where d is
the number of fields in the rule. The algorithm pre-processes the
rule set inferred to create a decision tree, and it is well
expounded that the leaves contain a subset of rules with the
number of rules bound by a predefined threshold. Packet header
fields hunt for the proper leaf, and then linearly search for a
corresponding rule fitting to that leaf5,19.

The DimCut utilizes a heuristic for selecting the correct
dimension to scan and pick the appropriate number of partitions
(cut) to be made, with the objective of distributing the rules
inside the partitions in a balanced manner, and with minimum
repetition of feasible rules. A larger number of cuts at a node
reduce the tree depth, but may increase rule replication and the
number of branches, which may not achieve a good rule
separation and also increase the memory usage. The process of
cutting is implemented at each level, and recursively on the
child nodes of that level, until the number of rules linked with
each node become lower than the threshold (maximum number
of rules that can be at a leaf node). We have endeavored to
discover heuristics and techniques that can transform the
algorithm for a higher performance with equitable memory

consumption.

In DimCut, the GL (H) is the geometric length associated with
column H in the rule set. To choose the best cut dimension, two
fields Ha, Hb are selected which have the least GL () values.
Statistical regression analysis is used to estimate the best
number of cuts. Based on several tests with reference to
efficiency and performance , it is found that the best Number of
cuts can be computed with the formula, NC = 495.22 + (.034 *
N) + (9 * 10-7 * N2) + (6.23*10-12 *N3), the Bucket size (The
threshold) set as, B = 2 if N<=10000 and B=5 if
10000<N<40000 and B= 8 if 40000<=N<=100000, Here, N =
Total Number of rules, some samples are provided in figures-
3,4,5.

The Array Pointer structure isused which works with a large
amount of rules. All rules have been arranged in priority order,
in accordance with the network administrator policy. The
decision tree will extend across to search the buckets covering
the incoming packet and will jump to the first bucket regions of
its origin. To arrive at the proper node by using the following
method, it’s possible to jump to the proper node rather than
traversing the tree, which is the main key for the high
performance and efficiency of our algorithm. The index table
indexes a reference number to the proper bucket that covers the
incoming packet after the optimization, such as eliminating the
empty nodes, region compaction, node merging etc.

Figure-3

Test the varying number of cuts behaviour to find the better amount. In contrast, points those match with the proposed NC

formula, almost shows lower number of search processing across increases in rules

Research Journal of Recent Sciences ___ ISSN 2277-2502

Vol. 4(2), 72-82, February (2015) Res.J.Recent Sci

 International Science Congress Association 76

Figure-4

Test the varying Threshold (Bucket Size) behavior to find the better amount. In contrast, points those match with the

proposed Threshold set, almost shows lower number of search processing across increases in rules

Figure-5

It Shows the Cut Dimension selection differences. In contrast, points those match with the proposed Cut Dimension

selection, almost shows lower number of nodes to construct the tree across increases in rules

When the first match bucket is found, a packet will forward to
all possible regions of the bucket and then all the header fields
of the packet will compare to all governing rules linearly and
the most prioritized rule is selected which matches perfectly,
Some pseudo codes are available in figures-6,7,8,9.

Methodology

This paper presents a rational evaluation and exploration of
packet classification algorithms, BV, HiCuts and DimCut which
are created on a decision tree structure. The assessment has been
conducted on processes built on comparable principles and
design varieties. Performance measurements have been
achieved by allocating the applied classifiers in an identical

format of trial situations. Our basic involvement in this work is
an unprejudiced comparison with shared standards and
valuation circumstances, by giving a homogeneous review of
these three classification algorithms which have been executed
with common principles and evaluated in a common trial
environment.

All the trials have been steered on standard PCs with 8 cores
Intel Xeon 3.00 GHz, RAM 8.00 GB, using the Oracle VM
Virtual Box to provide an insulated background, using GCC
4.7.1 compiler. Search performance is evaluated by directing it
through a large number of packets and rules; and to reach the
best valuation, the worst case scenario is used while providing
identical settings for all tests.

Research Journal of Recent Sciences ______

Vol. 4(2), 72-82, February (2015)

 International Science Congress Association

Figure-6

Find Cut Dimension – Pseudo Code

Figure-7

Initialize Buckets (nodes) – Pseudo Code

Simulated experimented methodology model setup

International Science Congress Association

Pseudo Code

Pseudo Code

Figure

Split Buckets (nodes)

Figure

Search Packet

For these tests, the 1000, 5000, 10000 … 100000, numbers of
random rules and the 20000 numbers of random packets have
been generated, with packet size of 20 Byte and the rule size of
52 Byte.

In the figure-10, the blueprint of the simulated experiment is
shown.

Figure-10

Simulated experimented methodology model setup

_______________ ISSN 2277-2502

 Res.J.Recent Sci

 77

Figure-8

Split Buckets (nodes) – Pseudo Code

Figure-9

Search Packet – Pseudo Code

For these tests, the 1000, 5000, 10000 … 100000, numbers of
random rules and the 20000 numbers of random packets have

erated, with packet size of 20 Byte and the rule size of

10, the blueprint of the simulated experiment is

Research Journal of Recent Sciences ___ ISSN 2277-2502

Vol. 4(2), 72-82, February (2015) Res.J.Recent Sci

 International Science Congress Association 78

The rule’s headers are Source IP (32 bit) and Destination IP (32
bit): (Exact/prefix), Source Port (16 bit) and Destination Port
(16 bit): (Exact value, any, ranges), Protocol (8 bit): (TCP,
UDP, ICMP, ANY, IGMP, GRE, IGP, EGP …) and the Actions
(8 bit): (Accept; Deny, Log, Forward, Nothing).

The evaluation metrics and parameters institute the Cut
Dimension, Number of Cut, Bucket Size, Rule Classification
Time (the amount of time required to classify rules), Packet
Classification Time (the amount of time needed to classify
packets), Rule Memory Access, Bucket Memory Access (which
indicates the amount of read or write, and the quantity of bytes
to or from memory, during packet classification process among
the Buckets), Number of Bytes Accessed per Packet =((Rule
Memory Access + Bucket Memory Access) / Packet Count),
Number of Search, Search Percentage used for evaluation and
Memory consumption (the amount of maximum memory usage
at the run time for both rule and packet classification),RTSC
(Read Time Stamp Counter or number of CPU clock cycles
ticks from the machine bootstrap).

The RTSC ("read time stamp counter") directive is accessible
on processors and is a tool for accurate timing. It stores the
number of elapsed clock-cycles from the moment when the
processors get under way. Comparing the results of RTSC,
before and after some action, could furnish the real run-time
information precisely to the clock cycles.

It is significant to note that our cited applications are only for
the purpose of replication and assessment, and therefore the

source code is not augmented as software. We have prudently
picked the formations that show the way to the best inclusive
accomplishment.

Results and Discussion

The following graphs display the comparison between the
HiCut, the DimCut and the Bit Vector algorithms. The incoming
packets are 20000 numbers of random packets (each packet size
is 20 Byte) at worst case condition. Therefore, the incoming
packet doesn’t match with any of the rules and offers the same
fair condition for comparison of all algorithms. Figure-11
demonstrates that, while the rules are increasing the packet
classification time also increases. The DimCut acts better with
respect to time consumption and it is faster than the others
during the progress of packet classification process.

Figure 12 shows the rule classification time, where, as the rules
number increases, the rule processing ability is decreasing.
However, the DimCut algorithm appears to be more competent
than others. Memory usage is far higher in case of the HiCut
and Bit Vector algorithms when compared to DimCut
algorithm, as can be seen from figure-13. The DimCut
maximum memory consumption according to this test format,
for at least 100000 rules, would be near to 15 MB which is a
very equitable amount. Figure 14 shows the total number of
search, which explains DimCut efficiency and performance that
needs to search lesser number of rules during packet
classification process.

Figure-11

A comparison between the HiCut, DimCutand BitVector, to measure the packet classification time (milli second)

Research Journal of Recent Sciences ___ ISSN 2277-2502

Vol. 4(2), 72-82, February (2015) Res.J.Recent Sci

 International Science Congress Association 79

Figure-12

A comparison between the HiCut, DimCutand BitVector,to measure the rule classification time (second)

Figure-13

A comparison between the HiCut, DimCut and Bit Vector, to measure the of memory usage (M)

The number of cuts, and the dimension selection to cut at each
internal decision tree node, is the key criterion for the HiCut and
DimCut algorithms performance. A larger bucket size, or lesser
number of cuts, can enable reduction of the size and depth of a
decision tree, but it can provoke a longer linear search time.
Experimenting could determine the appropriate bucket size for
the best trade off of storage and throughput. Generally, a larger
bucket size means a worse search processing but this does not
always sustain. According to the above tests, it’s clear that the
BV algorithm performance is relatively insensitive to the
number of rules. Since each Bit Vector is n number of bits equal

to number of rules (each bit represent a rule), and each field
should make a binary search tree, a very long bit vector needs
more time and memory consumption.

Through a series of experiments, we found that the algorithm
reliably exhibits improved performance and accessibility with
the proposed parameters and formula setting. The evaluation
results are regulated in a directly analogous manner. As most
packet classification algorithms are based on heuristics,
different rule sets with different structures and sizes are inclined
to offer very diverse results.

Research Journal of Recent Sciences ___ ISSN 2277-2502

Vol. 4(2), 72-82, February (2015) Res.J.Recent Sci

 International Science Congress Association 80

Figure-14

A comparison between the HiCut, DimCut and Bit Vector, to measure the total number of search

Table-1

The percentage of improvement of DimCut rather than HiCut, for the given Rules in worst case scenario

Rule Counts
Read Time Stamp Counter per

Rule

Rule Memory Access

(Bytes)

Read Time Stamp Counter per

Packet

1000 99.13821855 40.09060892 84.68104645

5000 91.10609912 10.44352821 82.24620748

10000 91.38404495 5.556692323 87.45688751

50000 94.23203546 5.474968917 65.8131665

100000 97.64946636 6.638041391 96.63581364

Table-2

The percentage of improvement of DimCut rather than Bit Vector, for the given Rules in worst case scenario

Rule

Counts

Read Time Stamp Counter per

Rule

Rule Memory Access (Bytes) Read Time Stamp Counter per

Packet

1000 94.29717247 99.69833297 97.97863244

5000 96.91425508 99.92368711 99.186784

10000 98.98292358 99.95498707 99.5337399

50000 98.94734536 99.94240285 99.16539838

100000 99.28746719 99.94545307 99.10585489

The performance studies show that DimCut can provide an
improvement of up to 96% of the given rules in Read Time
Stamp Counter per Packet calculation over the HiCut and 99%
over the Bit Vector, as can be seen from table-1 and 2.

The results of this test corroborate that the HiCut and Bit Vector
are slower than DimCut. Both algorithms show the trend is
more or less linear on the number of rules up to 10000 rules. In
case of the memory usage, the HiCut’s memory consumption is
up to 15 times and the BV’s memory consumption is up to 60
times more than the DimCut algorithm.

According to the data analysis and graphs, it is, therefore,

substantiated that the proposed algorithms, based on decision
tree, make packet classification faster, as compared to HiCut
and BV algorithms.

Conclusion

This paper aims at the evaluation concerns for high performance
packet classification algorithms, which is a vital feature in
Firewalls, routers, network security and quality of service (QoS)
assurance. The packet classification necessitates the packets to
be unambiguously stated with the multiple packet headers, to
identify the incoming flow and the rule with which the packet is
to be related. It is, therefore, the central prerequisite pertaining
to the range of networking management and controlling features

Research Journal of Recent Sciences ___ ISSN 2277-2502

Vol. 4(2), 72-82, February (2015) Res.J.Recent Sci

 International Science Congress Association 81

connected with policy-based networking traffic. To accomplish
a reliable performance, an algorithm should be conceived to
blend the best characteristics of all approaches, besides
optimizing the time-space transaction. A number of authors
have put forward innovative algorithms to realize superior
outcomes of classification time and memory consumption.

 Our work’s main contribution rests in the comprehensive and
uniform appraisal of HiCut, Bit Vector and DimCut
classification algorithms that have been implemented with
common principles and evaluated in a common test bed, by
measuring the Packet Classification Time, Number of Packet
per Second Classification, Number of Search, Rule Memory
access, Preprocessing Time/Tree Construction Time, Number of
buckets (leaves), Depth of the tree structure and Threshold.
Each test has been repeated three times to work out the average
amount for the final results.

The concluding findings have been illustrated in graphics for
operational demonstration. We opine that DimCut can be a
viable Packet Classification algorithm that delivers a robust
execution, besides allowing room for system designers to
substitute components, and as a result aid the research and
design community overall.

Further studies would, therefore, be necessitated to delve into
more orderly systems for honing the configurable parameters, in
order to upgrade the adaptive decision-tree construction
procedures and rule set structure.

References

1. Sundström M., Time and Space Efficient Algorithms for
Packet Classification and Forwarding, Doctoral Thesis,
Luleå University of Technology Department of
Computer Science and Electrical Engineering Centre for
Distance Spanning Technology, (2007)

2. Singh S., Baboescu F., Varghese G. and Wang J., Packet
Classification using Multidimensional Cutting, in
Proceedings of the ACM SIGCOMM ’03 Conference on
Applications, Tech., Archi., and Protocols for Computer
Communication (SIGCOMM ’03), 213–224, (2003)

3. Gupta P. and McKeown N., Packet Classification Using
Hierarchical Intelligent Cuttings, in Proceedings of IEEE
Symp. High Performance Interconnects (HotI), 7, (1999)

4. Vamanan B., Voskuilen G. and Vijay kumar T.N.,
EffiCuts: optimizing packet classification for memory
and throughput, in Proceedings of the ACM SIGCOMM
2010 conference on SIGCOMM, New Delhi, India,

(2010)

5. Amirjahanshahi H., Poustchi M. and Acharya H., Packet
Classification Algorithm Based on Geometric Tree by
using Recursive Dimensional Cutting (DimCut), in

proceeding of the Research journal of Recent Sciences,

2(8), 31-39 (2013)

6. Taylor D., Survey and Taxonomy of Packet
Classification Techniques, in Proceedings of ACM

Computing Surveys, (CSUR), 37(3), 238-275 (2005)

7. Song H. and Turner J., Toward Advocacy-Free
Evaluation of Packet Classification Algorithms, in IEEE

Transactions on Computers, 60, (2011)

8. Srinivasan V., Varghese G., Suri S. and Waldvogel M.,
Fast and scalable layer four switching, in Proceedings of
ACM Sigcomm '98, 191-202,Vancouver, Canada,

(1998)

9. Waldvogel M., Varghese G., Turner J. and Plattner B.,
Scalable High Speed IP Routing Lookups, in
Proceedings of the ACM SIGCOMM, 25-38 (1997)

10. Srinvasan V.and Varghese G., Fast Address Lookups
Using Controlled Prefix Expansion, in Proceedings of the
ACM Transactions on Computer Systems, Sigmetrics
'98/Performance'98, Joint International Conference on

Measurement and Modelling of Computer Systems,

(1999)

11. Gupta P.and McKeown N., Packet Classification on
Multiple Fields, in proceedings of the conference on
Applications, technologies, architectures, and protocols
for computer communication in ACM SIGCOMM’99,
147-160 (1999)

12. Feldmann A. and Muthukrishnan S., Trade-offs for
Packet Classification, in Proceedings of the IEEE
INFOCOM, Nineteenth Annual Joint Conference of the

IEEE Computer and Communications Societies, 3, 1193–
1202 (2000)

13. Stihdis D. and Lakslunan T.V., High-speed policy-based
packet forwarding using efficient multi-dimensional
range matching, in Proceedings of ACM Sigcomm, 203-
214, Vancouver, Canada, August 31– September (1998)

14. Qi Y. and Li J., An efficient hybrid algorithm for
multidimensional packet classification, in Proceedings of
the International Conference Communication, Network,

and Information Security, MIT, Cambridge, MA, USA,
October, 9–11, (2006)

15. Song H., Turner J. and Dharmapurikar S., Packet
Classification Using Coarse-Grained Tuple Spaces, in
Proceedings of the ACM/IEEE Symp, Architecture for
Networking and Comm., Systems (ANCS ’06), 41- 50

(2006)

16. Srinivasan V., Suri S.and Varghese G., Packet
Classification Using Tuple Space Search, Proc. ACM
SIGCOMM,
citeseer.ist.psu.edu/srinivasan99packet.html, (1999)

17. Baboescu F. and Varghese G., Scalable Packet
Classification, ACM SIGCOMM, (2001)

Research Journal of Recent Sciences ___ ISSN 2277-2502

Vol. 4(2), 72-82, February (2015) Res.J.Recent Sci

 International Science Congress Association 82

18. Abdelghani M., Sezer S., Garcia E. and Jun M., Packet
Classification Using Adaptive Rules Cutting (ARC), in
Proceedings of the IEEE Telecommunications,
advanced industrial conference on
telecommunications/service assurance with partial and
intermittent resources conference/e-learning on
telecommunications workshop, (2005)

19. Amirjahanshahi H., Poustchi M. and Acharya H.,
Modification on Packet Classification Algorithm Based
on Geometric Tree by using Recursive Dimensional
Cutting (DimCut) with Analysis, in proceeding of the
Research journal of Recent Sciences, 3(8), (issue in-
press), August (2014)

