6th International Young Scientist Congress (IYSC-2020) and Workshop on Intellectual Property Rights. 10th International Science Congress (ISC-2020).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Revolutionized strength of future Biomedicine Revealed: Nanolipomedicines

Author Affiliations

  • 1 Pacific University, Udaipur, INDIA

Res. J. Recent Sci., Volume 3, Issue (IVC-2014), Pages 6-15,(2014)


Passing time has seen numerous developments in the computational approaches and applications. All this has shown a specialized positive impact in the field of Biomedicine and lead to encouragement of interdisciplinary fields like medical informatics, bio-informatics, nano-technology, nano-informatics, computational biology, system biology, etc. Present work embraces the analytics of the advancements and unearthing across the most deadly diseases in the world. Major emphasis is on the improvements in the drug delivery methods to ensure site-specificity and effectiveness of the potential drugs. It is the most important aspect of the present targeted therapies is the drug delivery vehicles. Paper revolves around the characteristics of an ideal drug delivery system. Is it Efficiency? Biocompatibility? Or just Nonimmunogenicity? Yes, here drug-carriers are on the spotlight. Additionally we also focused the deciding factors like drug circulation time, its ADMET aspects and chemical descriptors that are the indispensable part of a drug-carrier system. In the end publication survey results provides a suitable podium to present work. The possibilities of novel developments offer the clear cut proof of increasing popularity of biological lipid vesicles and nano-scale drug delivery systems. Citations involve current market and clinical status of such systems in our present day RandD and pharma-market.


  1. Dan Peer, Jeffrey M. Karp, Seungpyo Hong, Omid C. Farokhzad, Rimona Margalit and Robert Langer, Nanocarriers as an emerging platform for cancer therapy, nature Nanotechnology, 2, 751-760(2007)
  2. Phan J.H., Moffitt R.A., Stokes T.H., Liu J., Young A.N., Nie S. and Wang M.D., Convergence of biomarkers, bioinformatics and nanotechnology for individualized cancer treatment, Trends Biotechnol, 27(6) 350-358 (2009)
  3. Maojo V. et al, Nanoinformatics: developing new computing applications for nanomedicine, Computing, 94(6) 521-539 (2012)
  4. Jesus M. de la Fuente V. Grazu, Nanobiotechnology Inorganic Nanoparticles vs Organic Nanoparticles, Frontiers of Nanoscience, (2012), ISBN: 0124157696 )
  5. Ambrogi F., Coradini D., Bassani N., Boracchi P. and Biganzoli E., Bioinformatics and Nanotechnologies: Nanomedicine. In: Kasabov N, ed., Springer Handbook of Bio-/Neuroinformatics: Springer Berlin Heidelberg, 517-532 (2014)
  6. Sheng W.Y. and Huang L., Cancer immunotherapy and nanomedicine, Pharm Res., 28(2) 200-214 (2011)
  7. Ranjan Sanjeev, Liposome Nanoparticles for Targeted Drug Delivery, Gene Delivery and Magnetic Imaging, 137(2012)
  8. Slingerland M., Guchelaar H.J. and Gelderblom H., Liposomal drug formulations in cancer therapy: 15 years along the road, Drug Discov Today, 17(3-4) 160-166(2012)
  9. Pinheiro M., Lúcio M., José L.F.C. Lima, Salette Reis, Liposomes as Drug Delivery Systems for the Treatment of TB, Nanomedicine., 6(8) 1413-1428 (2011)
  10. Gulati M., Bajad S., Singh S., Ferdous A.J. and Singh M., Development of liposomal amphotericin B formulation, J Microencapsul. 15(2) 137-151 (1998)
  11. Sanvicens Nuria and Pilar Marco M., Multifunctional nanoparticles – properties and prospects for their use in human medicine, Trends in Biotechnology, 26(8) 425-433(2008)
  12. Yezhelyev M.V. et al. Emerging use of nanoparticles in diagnosis and treatment of breast cancer, Lancet Oncol,7, 657–667 (2006)
  13. Pison U. et al. Nanomedicine for respiratory diseases, Eur. J. Pharmacol,533, 341–350 (2006)
  14. Ramishetti S. and Huang L., Intelligent design of multifunctional lipid-coated nanoparticle platforms for cancer therapy, Ther Deliv., 3(12) 1429-1445 (2012)
  15. Zhang Y., Peng L., Mumper R.J. and Huang L., Combinational delivery of c-mycsiRNA and nucleoside analogs in a single, synthetic nanocarrier for targeted cancer therapy, Biomaterials, 34(33) 8459-8468 (2013)
  16. Alyautdin R., Khalin I., Nafeeza M.I., Haron M.H. and Kuznetsov D., Nanoscale drug delivery systems and the blood-brain barrier, Int J Nanomedicine, 9, 795-811 (2014)
  17. Ribatti D., Nico B., Crivellato E. and Artico M., Development of the blood–brain barrier: a historical point of view, Anat Rec B New Anat., 289(1), 3–8 (2006)
  18. Lewandowsky M. Zur Lehre von der Cerebrospinal flüssigkeit, On the cerebrospinal fluid, X Z Klin Med., 40, 480–494 (1900)
  19. Begley D.J., Delivery of therapeutic agents to the central nervous system: the problems and the possibilities,Pharmacol Ther., 104, 29–45 (2004)
  20. Begley D.J., The blood–brain barrier: principles for targeting peptides and drugs to the central nervous system,J Pharm Pharmacol. 4, 136–146 (1996)
  21. Bernacki J., Dobrowolska A., Nierwiska K. and Malecki A., Physiology and pharmacological role of the blood–brain barrier, Pharmacol Rep., 60, 600–622, (2008)
  22. Abbott N.J., Dynamics of CNS barriers: evolution, differentiation and modulation, Cell Mol Neurobiol., 25, 5–22 (2005)
  23. Abbott N.J., Comparative physiology of the blood–brain barrier. In: Bradbury, MWB, editor. Physiology and Pharmacology of the Blood–Brain Barrier, Heidelberg: Springer-Verlag, 371–396 (1992)
  24. William M. Pardridge, Drug Delivery Across the Blood-Brain Barrier, Journal of Cerebral Blood Flow and Metabolism,32, 1959–1972 (2012)
  25. Pardridge W.M., Blood-brain barrier delivery, Drug Discov Today, 12, 54-61 (2007)
  26. Pangalos M.N., Schechter L.E. and Hurko O., Drug development for CNS disorders: strategies for balancing risk and reducing attrition, Nat Rev Drug Discov, 6(7) 521-532 (2007)
  27. Samad A., Sultana Y. and Aqil M., Liposomal drug delivery systems: an update review, Curr Drug Deliv, 4(4), 297-305 (2007)
  28. Srinivas Ramishetti, Leaf Huang, Intelligent design of multifunctional lipid-coated nanoparticle platforms for cancer therapy, Ther Deliv., 3(12), 1429–1445 (2012), 6-15 (2014)
  29. Dominguez A., Suarez-Merino B. and Goni-de-Cerio F., Nanoparticles and blood-brain barrier: the key to central nervous system diseases, J Nanosci Nanotechnol, 14(1), 766-779 (2014)
  30. Kaiser J.M., et al., Nanoliposomal minocycline for ocular drug delivery, Nanomedicine: NBM, 9, 130-140 (2013)
  31. Ko A.H., Tempero M.A., Shan Y.S., Su W.C., Lin Y.L., Dito E., Ong A., Wang Y.W., Yeh C.G. and Chen L.T., A multinational phase 2 study of nanoliposomal irinotecansucrosofate (PEP02, MM-398) for patients with gemcitabine-refractory metastatic pancreatic cancer, Br J Cancer, 109(4), 920-925 (2013)
  32. Hosny K.M., Ahmed O.A. and Al-Abdali R.T., Enteric-coated alendronate sodium nanoliposomes: a novel formula to overcome barriers for the treatment of osteoporosis, Expert Opin Drug Deliv, 10(6), 741-746(2013)
  33. Liang J., Wu W., Liu Q. and Chen S., Long-circulating nanoliposomes (LCNs) sustained delivery of baicalein (BAI) with desired oral bioavailability in vivo, Drug Deliv. 20(8), 319-323 (2013)
  34. Subramanian M., Holopainen J.M., Paukku T., Eriksson O., Huhtaniemi I. and Kinnunen P.K., Characterisation of three novel cationic lipids as liposomal complexes with DNA, Biochim BiophysActa. 1466(1-2), 289-305 (2000)
  35. Saily V.M., Ryhanen S.J., Lankinen H., Luciani P., Mancini G., Parry M.J. and Kinnunen P.K., Impact of reductive cleavage of an intramolecular disulfide bond containing cationic gemini surfactant in monolayers and bilayers, Langmuir, 22(3), 956-962 (2006)
  36. Ryhanen S.J., Saily M.J., Paukku T., Borocci S., Mancini G., Holopainen J.M. and Kinnunen P.K., Surface charge density determines the efficiency of cationic gemini surfactant based lipofection, Biophys J., 84(1), 578-587(2003)
  37. Doms A. and Schroeder M., GoPubMed: exploring PubMed with the Gene Ontology, Nucleic Acids Res., 33, Web Server issue, W783-786 (2005)
  38. Sinha R., Kim G.J., Nie S., Shin D.M., Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery, Mol Cancer Ther., 5(8), 1909-1917 (2006)
  39. Jabr-Milane L.S., van Vlerken L.E., Yadav S. and Amiji M.M., Multi-functional nanocarriers to overcome tumor drug resistance, Cancer Treat Rev., 34(7), 592-602, (2008)
  40. FDA Food and Drug Administration (http://www.fda.gov /Drugs/default.htm) (http://www.accessdata.fda.gov/Scripts /cder/drugsatfda/index.cfm?fuseaction=Search.Search_Drug_Name) last Accessed on 15 may 2014 (2014)