A Mild and Environmentally benign Synthesis of Benzimidazoles: Relevance to the pectin hetero Polysaccharide as a Catalyst

Agrwal Akansha*, Agrwal Deepali, Bairagi Anamika and Kasana Virendra Kumar
Organic Synthesis Laboratory, Department of Chemistry, CBSH, G.B. Pant University of Agriculture and Technology, Pantnagar (U.S.Nagar) - 263145, Uttarakhand, INDIA

Available online at: www.isca.in, www.isca.me
Received 12th June 2014, revised 2nd August 2014, accepted 4th September 2014

Abstract

We have developed a green procedure by using benzaldehyde and o-phenylene diamine as the model substrate, hetero polysaccharide pectin as a catalyst and water as a solvent. The generality and scope of this protocol was determined by synthesizing various derivatives of benzimidazole in good to excellent yield through this environment friendly, time and energy saving, green method.

Keywords: Hetero polysaccharide, pectin, Cyclocondensation, green method, benzimidazole.

Introduction

Synthesis of benzimidazole derivatives are very important due to their great pharmacological importance. They can be used as anticonvulsant, antibacterial, antifungal, antitumor, antihelminthic, antiamoebic analgesic and antitumor1-9. So, it is in great demand to develop the environmentally benign and easy procedure for the synthesis of benzimidazole. For this purpose the use of those easily available organic catalysts which do not produce any harmful effect is very necessary. Some of already used methods and catalysts are CAN, microwave, p-TsOH, transition metal nitrate, lead peroxide, Cu nano particle, ring closing agent as hydrochloric acid or polyphosphosphoric acid, HFIP, NH₄Cl10-18. In recent days the use of biocatalytic methods are preferred over chemical methods19. In continuation to our greener method development programme, we have found heteropolysaccharide pectin as a green catalyst which is cheap and easily available. We investigated its potential for catalyzing the reaction and the results are presented in this paper20. The process is remarkably simple, high yielding, highly efficient, time and energy saving. To the best of our knowledge this is the first report for the use of pectin as a catalyst to form substituted benzimidazole. Along with Benzimidazole the synthesis of various other useful compounds using different methods are increasing21-24.

Material and Methods

Catalyst: Pectin is a compound belongs to carbohydrate family, it is a heteropolysaccharide also named as α-1,4 – galacturonic acid. The structure of pectin can be shown as:

400 mg of pectin heteropolysaccharide mixed with 10 ml water in a 100 ml round bottom flask and stirred for 5 minute on magnetic stirrer to form a paste of pectin in water.

General procedure of Formation of Benzimidazole Derivatives: 10 m mole benzaldehyde, 10 m mole o-phenylenediamine are mixed in above paste and put the reaction mixture on magnetic stirrer once again for half an hour. The purity of products and reaction progress was checked by TLC on silica gel plates using hexane and ethyl acetate (80:20) solvent system and visualized using iodine vapours and UV detection. After completion of reaction, if the product is solid, it is collected by filtration, washed with water, dried and recrystallized with ethanol, if product is gummy it is extracted with ethyl acetate and organic phase is washed with water and dried over sodium sulphate. Finally formation of compounds was confirmed by NMR and IR analysis.

Results and Discussion

With success on the development of this green procedure we used different derivatives of benzaldehyde and o-phenylenediamine as the model substrate for this reaction in which benzimidazole and its derivatives are obtained in different yields (table-1).
Experiments were performed in absence of catalyst at the same conditions, a low yield is obtained which proves the importance of our catalyst. Different derivatives of Benzimidazole and their yield formed are shown in table-1. The importance of our catalyst to the others are shown in table-2.

The plausible mechanism of the reaction is proposed. Electrophilicity of carbonyl carbon of benzaldehyde is enhanced by the catalyst pectin followed by cyclisation and the dehydration (scheme.2).

Scheme-1

Formation of benzimidazole by o-phenylenediamine and benzaldehyde using benzaldehyde using Pectin as Catalyst

Table-1

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ar</th>
<th>Time (Min)</th>
<th>Product</th>
<th>Yield</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-C_6H_5</td>
<td>15</td>
<td>3a</td>
<td>84</td>
<td>Gummy</td>
</tr>
<tr>
<td>2</td>
<td>3-(NO_2)-C_6H_4</td>
<td>12</td>
<td>3b</td>
<td>87</td>
<td>Solid</td>
</tr>
<tr>
<td>3</td>
<td>4-(NO_2)-C_6H_4</td>
<td>18</td>
<td>3c</td>
<td>88</td>
<td>Solid</td>
</tr>
<tr>
<td>4</td>
<td>3-(OCH_3)-C_6H_4</td>
<td>20</td>
<td>3d</td>
<td>85</td>
<td>Solid</td>
</tr>
<tr>
<td>5</td>
<td>4-(OCH_3)-C_6H_4</td>
<td>15</td>
<td>3e</td>
<td>86</td>
<td>Solid</td>
</tr>
<tr>
<td>6</td>
<td>4-(Cl)-C_6H_4</td>
<td>25</td>
<td>3f</td>
<td>90</td>
<td>Solid</td>
</tr>
<tr>
<td>7</td>
<td>4-(OH)-C_6H_4</td>
<td>22</td>
<td>3g</td>
<td>91</td>
<td>Solid</td>
</tr>
<tr>
<td>8</td>
<td>3-(OH)-C_6H_4</td>
<td>30</td>
<td>3h</td>
<td>86</td>
<td>Solid</td>
</tr>
<tr>
<td>9</td>
<td>4-(F)-C_6H_4</td>
<td>20</td>
<td>3i</td>
<td>90</td>
<td>Solid</td>
</tr>
<tr>
<td>10</td>
<td>3-(Br)-C_6H_4</td>
<td>15</td>
<td>3j</td>
<td>88</td>
<td>Gummy</td>
</tr>
<tr>
<td>11</td>
<td>4-(CH_3)-C_6H_4</td>
<td>20</td>
<td>3k</td>
<td>87</td>
<td>Gummy</td>
</tr>
</tbody>
</table>

Scheme-2

Plausible Mechanism for Synthesis of benzimidazole using pectin as a catalyst:
IR and NMR Analysis of some Compounds: Entry 2 - 2-(3-nitrophenyl)-benzimidazole (3b), IR : 3376 cm\(^{-1}\), 2881 cm\(^{-1}\), 1616 cm\(^{-1}\), 1492 cm\(^{-1}\). \(^1\)H NMR (CDCl\(_3\), 500MHz): δ ppm 10.15 (s, H, -NH), 7.1-8.7 (m, 8H, -Ar).
Entry 3 - 2-(4-nitrophenyl)-benzimidazole (3c): IR : 3398 cm\(^{-1}\), 2847 cm\(^{-1}\), 1604 cm\(^{-1}\), 1344 cm\(^{-1}\). \(^1\)H NMR (CDCl\(_3\), 500 MHz): δ ppm 10.20 (s, H,-NH), 7.317-8.52 (m, 8H,-Ar).
Entry 4 - 2-(4-hydroxyphenyl)-benzimidazole (3e): IR : 3317 cm\(^{-1}\), 3051 cm\(^{-1}\), 1599 cm\(^{-1}\), 1426 cm\(^{-1}\), 1293 cm\(^{-1}\). \(^1\)H NMR (CDCl\(_3\), 500 MHz): δ ppm 9.8 (s, H,-NH), 6.80-8.10 (m, 8H,-Ar).

Conclusion

We have developed an easy, highy efficient, time and energy saving, high yielding and greener approach for the synthesis of benzimidazole by cyclo condensation of different derivatives of benzaldehyde and o-phenylene diamine in water using pectin heteropolysaccharide as a catalyst. The key advantages of this procedure are cost effectiveness of catalyst, easy work-up and purification of product by non chromatographic methods and excellent yield.

Acknowledgements

The authors wish to thank G.B.P.U.A and T. Pantnagar for providing necessary research facilities, AIRF JNU Delhi for NMR and ISF Moga for IR spectral analysis.

References

7. Shukla J.S., Saxena S., Rastogi R., synthesis and anthelmintic activity of 1-(5’ substituted phenoxy methyl,1’3;4’-Thiadiazol-2’-yl),2-methyl-4-substituted-benzylideneimidazol-5-ones,Current Science, 51, 817-820 (1982)
10. Kidwai M., Jahan A. and Bhatnagar D. Polyethylene glycol: A recyclable solvent system for the synthesis of...
benzimidazole derivatives using CAN as a catalyst, 122, 607-612 (2010)

