6th International Young Scientist Congress (IYSC-2020) will be Postponed to 8th and 9th May 2021 Due to COVID-19. 10th International Science Congress (ISC-2020).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Sorgoleone from Sorghum bicolor as a Potent Bioherbicide

Author Affiliations

  • 1Department of Biotechnology, Sathyabama University, Chennai-600 119, Tamilnadu, INDIA
  • 2Department of Plant Biology and Biotechnology, Loyola College, Chennai- 600 034, INDIA
  • 3Entomology Research Institute, Loyola College, Chennai- 600 034, INDIA

Res. J. Recent Sci., Volume 3, Issue (ISC-2013), Pages 32-36, (2014)

Abstract

Sorgoleone is an allelopathic chemical released from the root exudates of the dryland cereal crop, Sorghum bicolor. It is predominately concentrated in the living root hairs of sorghum. The root hairs of juvenile plants produce higher content of sorgoleone. Its ability to suppress and inhibit the growth of weeds without affecting the crop species offers a promising platform to mark its use as a potential bioherbicide. Weeds with broadleaf and grass weeds were reported to be susceptible to the herbicidal activity of sorgoleone. The pre-emergence and post-emergence applications of sorgoleone strongly inhibited the growth of different weeds in both greenhouse and field conditions. Sorgoleone is a hydrophobic molecule that persists in the soil for a longer duration, thereby adding to its sustainable herbicidal activity. Besides, its allelopathic potential enables its use in crop rotation to protect the soils vulnerable to support the growth of weeds. The mechanisms of its phytotoxic activity focus on the inhibition of photosynthetic apparatus in lower plants by interfering with the uptake of solutes and water molecules. Further it is also a potent inhibitor of electron transport in chloroplast and mitochondria. The effectiveness of the herbicidal activity of sorgoleone is comparable to that of the synthetic herbicides in commercial use.

References

  1. Soltys D., Krasuska U., Bogatek R. and Gniazdowska A., Allelochemicals as Bioherbicides-Present and Perspectives, INTECH, (http://creativecommons.org /licenses/by/3.0) (2013)
  2. Bertin C., Yang X. and Weston L.A., The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil, 256, 67-83 (2003)
  3. Inderjit and Duke S.O., Ecophysiological aspects of allelopathy, Planta,217, 529-539 (2003)
  4. Duke S.O., The emergence of grass root chemical ecology. Proceedings of the National Academy of Sciences of the United States of America, 104, 16729-16730 (2007)
  5. Putnam A.R. and De Frank J., Use of phytotoxic plant residues for selective weed control, Crop Protec., , 173-181 (1983)
  6. Putnam A.R., De Frank J. and Barnes J.P., Exploration of allelopathy for weed control in annual and perennial cropping systems. J. Chem. Ecol., , 1001-1010 (1983)
  7. Forney D.R., Foy C.L. and Wolf D.D., Weed suppression in no-till alfalfa (Medicago sativa) by prior cropping of summer annual forage grasses, Weed Sci., 33, 490-497 (1985)
  8. Einhellig F.A. and Rasmussen J.A., Prior cropping with grain sorghum inhibits weeds, J. Chem. Ecol., 15, 951-960 (1989)
  9. Weston L.A., Utilization of allelopathy for weed management in agroecosystems, Agronomy J., 88860-866 (1996)
  10. Rimando A.M., Dayan F.E. and Streibig J.C., PSII inhibitory activity of resorcinolic lipids from Sorghum bicolor, J. Nat. Prod., 66, 42–45 (2003)
  11. Netzley D.H. and Butler L.G., Roots of sorghum exude hydrophobic droplets containing biologically active components, Crop Sci., 26, 776-778 (1986)
  12. Dayan F.E., Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor, Planta, 224, 339–346 (2006)
  13. Nimbal C.I., Pedersen J.F., Yerkes C.N., Weston L.A. and Weller S.C., Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm, J. Agric. Food Chem., 44, 1343–1347 (1996)
  14. Weston L.A. and Czarnota M.A., Activity and persistence of sorgoleone, a long-chain hydroquinone produced by Sorghum bicolor, J. Crop Prod., 4(2), 363-377 (2001)
  15. Nimbal C.I., Yerkes C.N., Weston L.A. and Weller S.C., Herbicidal activity and site of action of the natural product sorgoleone, Pest. Biochem. Physiol., 54, 73-83 (1996)
  16. Uddin M.R., Park K.W., Kim Y.K., Park S.U. and Pyon J.Y., Enhancing sorgoleone levels in grain sorghum root exudates, J. Chem. Ecol., 36914–922 (2010)
  17. Dayan F.E., Howell J.L. and Weidenhamer J.D., Dynamic root exudation of sorgoleone and its in planta mechanism of action, J. Exp. Bot., 60, 2107–2117 (2009)
  18. Duke S.O., Weeding with transgenes, Trends. Biotech., 21, 192-195 (2003)
  19. Daniel Cook, Rimando A.M., Clemente T.E., Schrφder J., Dayan F.E., Nanayakkara D., Pan Z., Noonan B .P., Fishbein M., Abe I., Duke S.O. and Baerson S.R., Alkylresorcinol synthases expressed in Sorghum bicolorroot hairs play an essential role in the biosynthesis of the allelopathic benzoquinone sorgoleone, The Plant Cell, 22, 867-887 (2010)
  20. Erickson J., Schott D., Reverri T., Muhsin W. and Ruttledge T., GC-MS analysis of hydrophobic root exudates of sorghum and implications on the parasitic plant Striga asiatica, J. Agri. Food Chem., 49, 5537–5542 (2001)
  21. Kagan I.A., Rimando A.M. and Dayan F.E., Chromatographic separation and in vitro activity of sorgoleone congeners from the roots of Sorghum bicolor, J. Agri. Food Chem., 51, 7589–7595 (2003)
  22. Pan Z., Rimando A.M., Baerson S.R., Fishbein M. and Duke S.O., Functional characterization of desaturases involved in the formation of the terminal double bond of an unusual 16:3D9, 12, 15 fatty acid isolated from Sorghum bicolor root hairs, J. Biol. Chem., 282, 4326–4335 ( 2007)
  23. Baerson S.R., Dayan F.E., Rimando A.M. and et al., A functional genomics investigation of allelochemical biosynthesis in Sorghum bicolor root hairs, J. Biol. Chem., 283, 3231–3247 (2008)
  24. Austin M.B. and Noel J.P., The chalcone synthase superfamily of type III polyketide synthases, Nat. Prod. Rep., 20, 79–110 (2003), 32-36 (2014)
  25. Dayan F.E., Kagan I.A. and Rimando A.M., Elucidation of the biosynthetic pathway of the allelochemical sorgoleone using retrobiosynthetic NMR analysis, J. Biol. Chem., 278, 28607–28611 (2003)
  26. Yang X., Scheffler B.E. and Weston L.A., SOR1, a gene associated with bioherbicide production in sorghum root hairs, J. Exp. Bot., 55, 2251-2259 (2004)
  27. Hess D.E., Ejeta G. and Buttler L.G. Selection of sorghum genotypes expressing a quantitative biosynthetic trait that confers resistance to Striga, Phytochemistry, 31, 493–497 (1992)
  28. Yang X., Owens T.G., Scheffler B.E. and Weston L.A., Manipulation of root hair development and sorgoleone production in sorghum seedlings, J. Chem. Ecol., 30, 199–213 (2004)
  29. Weir T.L., Park S.W. and Vivanco J.M., Biochemical and physiological mechanisms mediated by allelochemicals, Cur. Opinion. Plant. Biol., 472-479 (2004)
  30. Dayan F.E., Rimando A.M., Pan Z., Baerson S.R., Gimsing A.L. and Duke S.O., Sorgoleone, Phytochemistry, 71, 1032–1039 (2010)
  31. Rimando A.M., Dayan F.E., Czarnota M.A., Weston L.A. and Duke S.O., A new photosystem II electron transport inhibitor from Sorghum bicolor, J. Nat. Prod., 61, 927-930 (1998)
  32. Mets L. and Thiel A., Biochemistry and genetic control of the photosystem II herbicide target site, In Target Sites of Herbicide Action, eds. P. Boger and G. Sandmann, Boca Raton, FL: CRC Press, 1-24 (1989)
  33. Gonzalez V.M., Kazimir J., Nimbal C., Weston L.A. and Cheniae G.M., Inhibition of a photosystem II electron transfer reaction by the natural product sorgoleone, J. Agric. Food Chem., 45, 1415–1421 (1997)
  34. Meazza G., Scheffler B.E., Tellez M.R., Rimando A.M., Romagni J.G., Duke S.O., Nanayakkara D., Khan I.A., Abourashed E.A. and Dayan F.E., The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase, Phytochemistry, 60, 281-288 (2002)
  35. Hejl A.M. and Koster K.L., The allelochemical sorgoleone inhibits root H+-ATPase and water uptake, J. Chem. Ecol., 30(11), 2181-2191 (2004)
  36. Subbarao V., Hossain Z., Nakahara K., Ishikawa T. and et al., Biological nitrification inhibition (BNI) potential in sorghum, The Proceedings of the International Plant Nutrition Colloquium XVI, Department of Plant Sciences, UC Davis, (2009)
  37. Einhellig F.A and Souza I.F., Phytotoxicity of sorgoleone found in grain sorghum root exudates, J. Chem. Ecol., 18, 1–11 (1992)
  38. Uddin M.R., Kim Y.K., Park S.U. and Pyon J.Y., Herbicidal activity of sorgoleone from grain sorghum root exudates and its contents among sorghum cultivars. Kor. J. Weed Sci., 29, 229–236 (2009)
  39. Khaliq A., Cheema Z.A., Mukhtar M.A. and Ahmad S.M., Evaluation of sorghum (Sorghum bicolor) water extract for weed control in soybean, Int. J. Agri. Biol., 1(1), 23-26 (1999)
  40. Cheema Z.A. and Khaliq A., Use of sorghum allelopathic properties to control weeds in irrigated wheat in semi arid region of Punjab, Agriculture, Ecosys. Environ,(2000)
  41. Irshad A. and Cheema Z.A., Comparative efficacy of sorghum allelopathic potential for controlling barnyardgrass in rice. Proceedings of the 4th World Congress on Allelopathy, Wagga Wagga, New South Wales, Australia, (2005)
  42. Garcia T.L. and Fernandez C. (eds), Fundamentos sobre malas hierbas y herbicidas. M.A.P.A, Publicaciones del Servicio de Extensi ΄on Agraria, Madrid, Spain (1991)
  43. Uddin M.R., Park S.U., Dayan F.E. and Pyon J.Y., Herbicidal activity of formulated sorgoleone, a natural product of sorghum root exudates, Wileyonlinelibrary.com/journal/ps., Pest manag. Sci., (2013)
  44. Uddin M.R., Park K.W., Pyon J.Y. and Park S.U., Combined herbicidal effect of two natural products (sorgoleone and hairy root extract of tartary buckwheat) on crops and weeds, Australian J. Crop Sci., 7(2), 227-233 (2013)
  45. Einhellig F.A., Mechanisms and modes of action of allelochemicals, In: Putnam AR, Tang C-S (eds.) The science of allelopathy, Wiley, New York, 171–188 (1986)