International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Effect of crude Fatty acid extract of Streptomyces sps on biofilm forming Candida albicans MTCC 3017

Author Affiliations

  • 1Department of Microbial Biotechnology, Bharathiar University, Coimbatore – 641046, Tamilnadu, INDIA
  • 2Department of Biotechnology, School of Life sciences, Karpagam University, Coimbatore – 641021, Tamilnadu, INDIA

Res. J. Recent Sci., Volume 3, Issue (ISC-2013), Pages 283-290, (2014)

Abstract

The effect of crude fatty acid extract of Streptomyces sps isolated from soil on the biofilm formation by Candida albicans MTCC 3017 was investigated. Totally, 25 Streptomyces sps were isolated and identified from the soil samples collected at Nilgiris hills. All the isolates were subjected to hydrogen peroxide assay to identify fatty acid production. Crude fatty acid extracts of all the positive isolates were analyzed for inhibition of biofilm formed by Candida albicans. The extracts of five isolates AP1, AP8, AP9, AP11 and AP23 showed inhibition percentage of 80.56%, 93.25%, 79.53%, 85.39% and 73.29% at 50 µg/ml. Furthermore the -galactosidase activity of extracts indicated capability of inhibiting the production of enzymes and reducing the hyphal growth of C. albicans. This study suggests that the crude fatty acid extracts of Streptomyces sps may be useful in preventing biofilm formation by the pathogen.

References

  1. Horn D.L., Neofytos D., Anaissie E.J. and other authors, Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry, Clin Infect Dis., 48, 1695-1703 (2009)
  2. Miceli M.H., Diaz J.A. and Lee S.A., Emerging opportunistic yeast infections, Lancet Infect Dis., 11, 142-151 (2011)
  3. Pfaller M.A. and Diekema D.J., Epidemiology of invasive candidiasis: a persistent public health problem, Clin Microbiol Rev., 20, 133-163 (2007)
  4. Wisplinghoff H., Bischoff T., Tallent S.M., Seifert H., Wenzel R.P., and Edmond M.B., Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study, Clin Infect Dis., 39, 309-317 (2004)
  5. Costerton J.W., Lewandowski Z., Caldwell D.E., Korber D.R. and Lappin-Scott H.M., Microbial biofilms, Annu Rev Microbiol., 49, 711-745 (1995)
  6. Chandra J., Kuhn D. M., Mukherjee P.K., Hoyer L.L., McCormick T. and Ghannoum M.A., Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance, J Bacteriol., 183, 5385-5394 (2001)
  7. Douglas L.J., Candida biofilms and their role in infection, Trends Microbiol., 11, 30-36 (2003)
  8. Ramage G., Vande Walle K., Wickes B.L. and LopezRibot J.L., Biofilm formation by Candida dubliniensis. J Clin Microbiol., 39, 3234-3240 (2001)
  9. Kojic E.M. and Darouiche R.O., Candida infections of medical devices. Clin Microbiol Rev., 17, 255-267 (2004)
  10. Lopez-Ribot J.L., Candida albicans biofilms: more than filamentation, Curr Biol., 15, R453-455 (2005)
  11. Odds F.C., Brown A.J. and Gow N.A., Antifungal agents: mechanisms of action, Trends Microbiol., 11, 272-279 (2003)
  12. Anderson J.B., Evolution of antifungal-drug resistance: mechanisms and pathogenfitness, Nat Rev Microbiol., 3, 547-556 (2005)
  13. Cowen L.E., Anderson J.B. and Kohn L.M., Evolution of drug resistance in Candida albicans, Annu Rev Microbiol., 56, 139-165 (2002)
  14. Sanglard D. and White T.C., Molecular principles of antifungal drug resistance. In Molecular principles of fungal pathogenesis, Edited by J. Heitman, S. G. Filler, J. E. Edwards and A. P. Mitchell. Washington, D.C.: ASM Press, 197-212 (2007)
  15. Sudbery P., Gow N. and Berman J., The distinct morphogenic states of Candida albicans, Trends Microbio., 12, 317-324 (2004)
  16. Huang C.B. and Ebersole J.L., A novel bioactivity of omega-3 polyunsaturated fatty acids and their ester derivatives, Mol Oral Microbiol., 25(1), 75–80 (2010)
  17. Huang C.B., George B. and Ebersole J.L., Antimicrobial activity of n- 6, n-7 and n-9 fatty acids and their esters for oral microorganisms, Arch Oral Biol., 55, 555–60 (2010)
  18. Sylvain L.S., Lucia V.M. and Elisabetta G., Effect of a- linolenic, capric and lauric acid on the fatty acid biosynthesis in Staphylococcus aureus, Int J Food Microbiol., 129, 288–294 (2009)
  19. Okuyama H., Orikasa Y., Nishida T., Significance of antioxidative functions of eicosapentaenoic and docosahexaenoic acids in marine microorganisms, Appl Env Microbiol., 74(3), 570–574 (2008)
  20. Bergusson G., Arnfinnsson J., Steingrimsson O., Thormar H., In vitro killing of Candida albicans by fatty acids and monoglycerides, Antimicrob. Agents Chemother., 45, 3209–3212 (2001)
  21. Noverr M.C., Huffnagle G.B., Regulation of Candida albicans morphogenesis by fatty acid metabolites, Infect Immun., 72, 6206–6210 (2004)
  22. Kavitha A., Vijayalakshmi M., Sudhakar P. and Narasimha G., Screening of Actinomycete strains for the production of antifungal metabolites, Afr J Microbiol Res., 4(1), 27-32 (2011)
  23. Lee J.S., Hah Y.C. and Roe J.H., The induction of oxidative enzymes in Streptomyces coelicolor upon hydrogen peroxide treatment, J Gen Microbiol., 39, 1013-1018 (1993)
  24. Aghamirian M.R. and Ghiasian S.A., Isolation and characterization of medically important aerobic actinomycetes in soil of Iran, Open Microbiol J., 3, 53-57 (2009)
  25. Hyoung-pyo Kim and Jong-Soo Lee, Yung Chi1 Hah, Jung-Hye Roe Characterization of the major catalase from Streptomyces coelicolor ATCC 10147, Microbio.,l 140, 3391-3397 (1994)
  26. Ashwini Tilay. and Uday Annapure., Novel Simplified and rapid method for Screening and Isolation of Polyunsaturated Fatty Acids Producing Marine Bacteria, Biotechnol Res Int., 2012, 1-8 (2012)
  27. MIDI, Inc., Sherlock Microbial Identification System References (2001)
  28. Nithya C., Aravindraja C. and Pandian S.K., Bacillus pumilus of Palk Bay origin inhibits quorum-sensing- mediated virulence factors in Gram-negative bacteria, Res Microbiol., 161, 293-304 (2010)
  29. Kippert F.,A rapid permeabilization procedure for accurate quantitative determination of beta-galactosidase activity in yeast cells, FEMS Microbiol Lett., 128, 201-206(1995)
  30. Clement M., Tremblay J., Lange M., Thibodeau J. and Belhumeur P., Whey derived free fatty acids suppress the germination of Candida albicans in vitro, FEMS Yeast Res., 7, 276-285 (2007)
  31. Teixeira J.A. and Mota M., Determination of catalase activity and its inhibition by a simple manometric method, Biochem Edu., 20(3), 174–175 (1992)
  32. Lichstein H.C. and Soule M.H., Studies of the effect of sodium azide on microbic growth and respiration II,, The action of sodiuim azide on bacterial catalase, Journal of Bacteriology., 47(3), 231–238 (1944), 283-290 (2014)
  33. Nishida T., Morita N., Yano Y., Orikasa Y. and Okuyama H., The antioxidative function of eicosapentaenoic acid in a marine bacterium, Shewanella marinintestina IK-1. FEBS Lett., 581(22), 4212–4216 (2007)
  34. Nishida T., Orikasa Y., Watanabe K. and Okuyama H., The cell membrane-shielding function of eicosapentaenoic acid for Escherichia coli against exogenously added hydrogen peroxide, FEBS Lett., 580(28-29), 6690–6694(2006)
  35. Thenmozhi R., Nithyanand P., Rathna J. and Pandian S.K., Antibiofilm activity of coral-associated bacteria against different clinical M serotypes of Streptococcus pyogenesFEMS Immunol Med Microbiol., 57, 284-294 (2009)
  36. Clement M., Tremblay J., Lange M., Thibodeau J. andBelhumeur P., Purification and identification of bovine cheese whey fatty acids exhibiting in vitro antifungal activity, J Dairy Sci., 91, 2535-2544 (2008)
  37. Toenjes K.A., Munsee S.M., Ibrahim A.S., Jeffrey R., Edwards J.E., Jr., and Johnson D.I., Small-molecule inhibitors of the budded-to-hyphal-form transition in the pathogenic yeast Candida albicans, Antimicrob Agents Chemother., 49, 963-972 (2005)
  38. Nantel A., Dignard D., Bachewich C. and other authors Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell., 13, 3452-3465 (2002)