6th International Young Scientist Congress (IYSC-2020) will be Postponed to 8th and 9th May 2021 Due to COVID-19. 10th International Science Congress (ISC-2020).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Study of Photon Interaction with Plasticizers

Author Affiliations

  • 1Department of Physics, Gulbarga University, Gulbarga 585 106, Karnataka, INDIA

Res. J. Recent Sci., Volume 3, Issue (ISC-2013), Pages 75-81, (2014)

Abstract

The effective atomic number and electron density is calculated for some selected Plasticizers like Diethylene glycol dinitrate (DEDGN), Triethylene glycol dinitrate (TEGDN), Butanetriol trinitrate (BTTN), Trimethylolethane trinitrate(TMETN), Diethyl phthalate (DEP) and Diisobutyl phthalate (DIBP) for gamma radiation for energy region 1 keV-100 MeV by using mass attenuation coefficient from WinXCom. It is observed that the values of Zeff and Nel changes with energy for different Plasticizers. The variation of effective atomic number with energy for total photon interaction shows the dominance of different interaction process in different energy regions.

References

  1. Miodovnik A., Engel S.M., Zhu C., Ye X., Soorya L.V., Silva M.J., Calafat A.M. and Wolff M.S., Endocrine disruptors and childhood social impairment, Neurotoxicology.,32(2), 261-267 (2011)
  2. Kaewkhao J., Laopaiboon J. and Chewpraditkul W., Determination of effective atomic numbers and effective electron densities for Cu/Zn alloy, J. Quant. Spectrosc. Ra., 109, 1260-1265 (2008)
  3. Murty V., Effective atomic numbers for W/Cu alloy for total photon attenuation, Radiat. Phys. Chem.,71, 667–669 (2004)
  4. Sabriye S., Karahan I.H. and mer F.B., The measurement of total mass attenuation coefficients of CoCuNi alloys, J. Quant. Spectrosc. Ra.,83, 237-242 (2004)
  5. Manohara S.R. and Hanagodimath S.M., Studies on effective atomic numbers and electron densities of essential amino acids in the energy range 1 keV–100 GeV, Nucl. Instrum. Methods. B.,258, 321-328 (2007)
  6. Shivalinge G., Krishnaveni S. and Ramakrishna G., Studies on effective atomic numbers and electron densities in amino acids and sugars in the energy range 30–1333 keV, Nucl. Instrum. Methods B.,239, 361369 (2005)
  7. Shivalinge G., Krishnaveni S., Yashoda T., Umesh T.K. and Ramakrimshna G., Photon mass attenuation coefficients, effective atomic numbers and electrondensities of some thermoluminiscent dosimetric compounds, Pramana –J. Phys.,63, 1-13 (2004)
  8. Baltas H. and Cevik U., Determination of the effective atomic numbers and electron densities for YBaCuO superconductor in the range 59.5–136 keV, Nucl. Instrum. Methods B.,266, 1127-1131 (2008)
  9. Gerward L., Guilbert N., Jensen K.B. and Levring H., X-ray absorption in matter. Reengineering XCOM, Radiat. Phys. Chem.,60, 23-24 (2001)
  10. Gerward L., Guilbert N., Jensen K. B. and Levring H., WinXCom—A program for calculating x-ray attenuationcoefficients, Radiat. Phys. Chem.,71, 653-654 (2004)
  11. Jackson D.F. and Hawkes D.J., X-ray attenuation coefficients of elements and mixtures, Phys. Rep.,70, 169-233 (1981)
  12. Mudahar G.S., Singh M. and Singh G., Energy dependence of the effective atomic number of alloys, Appl. Radiat. Isot., 42, 509-512 (1991)