6th International Young Scientist Congress (IYSC-2020) will be Postponed to 8th and 9th May 2021 Due to COVID-19. 10th International Science Congress (ISC-2020).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Variation in Morphology and Crystallinity of ZTO Ceramics

Author Affiliations

  • 1Dept. of Physics, University of Calicut, Malappuram-673 635, Kerala, INDIA

Res. J. Recent Sci., Volume 3, Issue (ISC-2013), Pages 71-74, (2014)

Abstract

Higher electron mobility, interesting optical properties and their stability under extreme conditions made Zinc Stannate or zinc tin oxide (ZTO) a promising candidate for applications such as solar cells, gas sensing, photo catalysis etc. Among the different methods of synthesizing ZTO ceramics, the hydrothermal method is an attractive green process, carried out at relatively low temperatures. We report the characterisation of surfactant free hydrothermally prepared Zinc Stannate ceramics. The pH of the crystal growing medium is varied as 7, 8 and 10. The improvement of crystallinity of the samples with increase in basicity of the medium is clear from XRD (X-Ray Diffraction) results. Amorphous nature of the sample drastically changed and showed high crystalline nature while the pH of the medium increased to 10. The chemical composition of the samples was confirmed via EDS (Energy Dispersive Spectra). The pH variation has a prominent effect on the morphology of the sample. Perfect cubic shaped particles were observed for high pH sample in the SEM (Scanning Electron Microscopy) images. Diffuse reflectance spectra analysis showed that the UV absorption characteristic is also improved with the increase in basicity of the medium.

References

  1. Nomura K., Ohta H., Ueda K., Kamiya T., Hirano M. and Hosono, Microelectronic. Eng. 72, 294 (2004)
  2. Lana-Villarreal T., Boschloo G. and Hagfeldt A., J. Phys.Chem. C, 111, 5549 (2007)
  3. Miyauchi M., Liu Z., Zhao Z.G., Anandan S. and Hara K., Chem. Commun., 46, 1529 (2010)
  4. Tan B., Toman E., Li Y. and Wu Y.X., J. Am. Chem. Soc.129 4162(2010)
  5. Stambolova I., Konstantinov K., Kovacheva D., Peshev P. and Donchev T., J. Solid State Chem., 128, 305 (1997)
  6. Yu J.H. and Choi G.M., Sensors Actuators B, 72, 141 (2001)
  7. He Z.Q., Xiong L.Z., Xiao Z.B., Ma M.Y., Wu X.M. and Huang K.L., Trans. Nonferrous Met. Soc. China Engl. edn15, 1420 (2005)
  8. Rong A, Gao X.P., Li G.R., Yan T.Y., Zhu H.Y., Qu J.Q. and Song D.Y., J. Phys. Chem. B., 110, 14754 (2006)
  9. Xu J., Zhang H., Pan Q., Xiang Q. and Li C., KueiSuanJenHsuehPao/ J. Chin.Ceram . Soc., 35, 978 (2007)
  10. Fu X., Wang X., Long J., Ding Z., Yan T., Zhang G., Zhang Z. and Lin H., J. Solid State Chem., 182 517 (2009)
  11. Wang S., Yang Z., Lu M., Zhou Y., Zhou G., Qiu Z., Zhang H. and Zhang A., Mater. Lett., 61, 3005 (2007)
  12. Lou X., Jia X., Xu J., Liu S. and Gao Q., Mater. Sci. Eng.A, 432, 221 (2006)
  13. Cun W., Xinming W., Jincai Z., Bixian M., Guoying S, Ping’anPandJiamo F J. Mater. Sci., 37, 2989 (2002)
  14. Zhang Y., Guo M., Zhang M., Yang C., Ma T. and WangX., J. Cryst. Growth, 308, 99 (2007)
  15. Cusack P.A., Monk A.W., Pearce J.A. and Reynolds S.J. x, Fire Mater., 14, 23 (2002)
  16. Baruah S. and Dutta J., Sci. Technol. Adv. Mater., 10, 013001 (2009)
  17. He R., Law M., Fan R., Kim F. and Yang P., Nano Lett., 2 1109 (2002)
  18. Hu J., Bando Y. and Liu Z., Adv. Mater., 15, 1000 (2003)
  19. Hu J.Q., Meng X.M., Jiang Y., Lee C.S. and Lee S.T., Adv. Mater., 15, 70 (2003)
  20. Zeng J., Xin M., Li K., Wang H., Yan H. and Zhang W., J. Phys. Chem. C, 112 4159 (2008)