International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Artificial Neural Network: A Tool for Diagnosing Osteoporosis

Author Affiliations

  • 1Department of Computer Science, Federal Urdu University of Arts, Sciences and Technology, Karachi, PAKISTAN

Res. J. Recent Sci., Volume 3, Issue (2), Pages 87-91, February,2 (2014)

Abstract

The most important concern in the medical domain is to consider the interpretation of data and perform accurate diagnosis. To improve diagnostic process and avoid misdiagnosis, many e-Health systems use artificial intelligence method and especially artificial neural network to manipulate diverse type of clinical data. A common bone disease ‘osteoporosis’ does not only depend on bone mineral density but also some other factors have significance i.e. age, weight, height, life-style etc. these all factors play considerable role to diagnosis osteoporosis. In this study, we propose a decision making system using the factors other then bone mineral density to provide a convenient, accurate and inexpensive solution to predict future fracture risk.

References

  1. Kanis J. A., Diagnosis of osteoporosis, Osteoporosis Int., , 108-116 (1997)
  2. Chappard D., Baslé M.F., Legrand E. and Audran M., Trabecular bone microarchitecture: A review, Morphologie, 92, 162-70 (2008)
  3. Brandi M.L., Microarchitecture, the key to bone quality, Rheumatology, 48, vi3-8 (2009)
  4. World Health Organisation [WHO], Assessment of fracture risk and its application to screening for postmenopausal women, WHO Technical Report Series843(1994)
  5. The Joint Commission, Improving and Measuring Osteoporosis Management, National Pharmaceutical Council, (2008)
  6. McCulloch W.S. and Pitts W., A Logical Calculus of Ideas Immanent in Nervous Activity, Bull. Mathematical Bio-physics, , 115-133 (1943)
  7. Hebb D.O., The Organization of Behavior, John Wiley & Sons, New York, (1949)
  8. Rosenblatt, Frank, The Perceptron--a perceiving and recognizing automaton, Report 85-460-1, Cornell Aeronautical Laboratory, (1957)
  9. Amato F., González-Hernández J. and Havel J., Artificial neural networks combined with experimental design: a “soft” approach for chemical kinetics, Talanta, 93, 72–78 (2012)
  10. Rodríguez Galdón B., Peña-Méndez E., Havel J., Rodríguez Rodríguez E. and Díaz Romero C., Cluster Analysis and Artificial Neural Networks Multivariate Classification of Onion Varieties, J. Agric Food Chem., 11435–11440 (2010)
  11. Murarikova N., Vanhara J., Tothova A. and Havel J., Polyphasic approach applying artificial neural networks, molecular analysis and postabdomen morphology to West Palaearctic Tachina spp. (Diptera, Tachinidae), Bull. Entomol. Res., 101, 165–175 (2010)
  12. Kunio Doi, Computer-Aided Diagnosis in Medical Imaging: Historical Review, Current Status and Future Potential, Computerized Medical Imaging and Graphics, 31(4-5), 198-211 (2007)
  13. Mohiuddin K. and Mao J., A Comparative Study of Different Classifiers for Handprinted Character Recognition, Pattern Recognition in Practice IV, E.S. Gelsema and L.N. Kanal, eds., Elsevier Science, 437-448 (1994)
  14. Shikha P. and Shailja S., Neural Network Based Offline Signature Recognition and Verification System, Res. J. of Engin. Sci., 2(2)11-15 (2013)
  15. Atkov O., Gorokhova S., Sboev A., Generozov E., Muraseyeva E., Moroshkina S. and Cherniy N., Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters, J. Cardiol., 59, 190–194 (2012)
  16. Ho W. H., Lee K. T., Chen H. Y., Ho T.W. and Chiu H. C., Disease-free survival after hepatic resection in hepatocellular carcinoma patients: a prediction approach using artificial neural network, PloS One, 7(e29179), (2012)
  17. Karabulut E. and Ibrikçi T., Effective diagnosis of coronary artery disease using the rotation forest ensemble method, J. Med. Syst., 36, 3011–3018 (2012)
  18. uz H., A biomedical system based on artificial neural network and principal component analysis for diagnosis of the heart valve diseases, J. Med. Syst., 36, 61–72 (2012)
  19. Özbay Y., A new approach to detection of ECG arrhythmias: Complex discrete wavelet transform based complex valued artificial neural network, J. Med. Syst., 33,435–445 (2009)
  20. Kheirelseid E., Miller N., Chang K., Curran C., Hennessey E., Sheehan M., Newell J., Lemetre C., Balls G. and Kerin M., miRNA expressions in rectal cancer as predictors of response to neoadjuvant chemoradiation therapy, Int. J. Colorectal Dis., (2012)
  21. Tate A., Underwood J., Acosta D., Julià-Sapé M., Majós C., Moreno-Torres A., Howe F., van der Graaf M., Lefournier V., Murphy M., Loosemore A., Ladroue C et al., Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra, NMR Biomed., 19, 411–434, (2006)
  22. Brougham D., Ivanova G., Gottschalk M., Collins D., Eustace A., O’Connor R. and Havel J., Artifcial neural networks for classifcation in metabolomic studies of whole cells using 1H nuclear magnetic resonance, J. Biomed. Biotechnol, 158094, (2011)
  23. Yamashita K., Yoshiura T., Arimura H., Mihara F., Noguchi T., et al., Performance Evaluation of Radiologists with Artificial Neural Network for Differential Diagnosis of Intra-Axial Cerebral Tumors on MR Images, AJNR Am., J. Neuroradiol, 29, 1153–58 (2008)
  24. Alok A., Patra K. C. and Das S. K., Prediction of Discharge with Elman and Cascade Neural Networks, Res. J. Recent Sci., 2(1), 279-284 (2013)
  25. Kriti S. and Smita J., Artificial Neural Network Modelling of Shyamala Water Works, Bhopal MP, India: A Green Approach towards the Optimization of Water Treatment Process, Res. J. Recent Sci., 2(1), 26-28 (2013)
  26. Frangi A. F., Egmont-Petersen M., et al., Bone tumor segmentation from MR perfusion images with neural networks using multi-scale pharmacokinetic features, Image Vision Computing, 19: 679-90 (2001)
  27. Lynn N., et al., Use of artificial Neural Network together with EAU guidelines to reduce unnecessary bone scans, Eur. Urol. Supplements, 2(77), (2003)
  28. John R. I., et al., Neuro-fuzzy clustering of radiographic tibia image data using type 2 fuzzy sets, Information Sci.125, 65-82 (2000)
  29. Jensen J. E .B., Sharpe P. K., Caleb P. and Sorensen H. A.,Fracture prediction using artificial neural networks, Proc. of World Congress on Osteoporosis, Amsterdam, 18-23, (1996)
  30. Sarah A. R., Wen J. W. and Derek P., Artificial neural networks: a potential role in osteoporosis, J. R. Soc. Med., 92, 119-122 (1999)
  31. Shaikh A. B., Sarim M., Raffat S. K., Khan M. and Chinoy A., Bone Mineral Density Correlation against Bone Radiograph Texture Analysis: An Alternative Approach, Res. J. Recent Sci., 2(3), 87-91 (2013)
  32. Shepherd A. J., Cass A. R., Carlson C. A. and Ray L., Development and internal validation of the male osteoporosis risk estimation score, Ann. Fam. Med., , 540–6 (2007)
  33. Lynn H. S., Woo J., Leung P. C., et al., An evaluation of osteoporosis screening tools for the osteoporotic fractures in men (MrOS) study, Osteoporos Int., 19, 1087–92 (2008)
  34. Skedros J. G., Sybrowsky C. L. and Stoddard G. J., The osteoporosis self-assessment screening tool: a useful tool for the orthopaedic surgeon, J. Bone Joint Surg. Am., 89, 765–72 (2007)
  35. Sedrine W. B., Chevallier T., Zegels B., et al., Development and assessment of the Osteoporosis Index of Risk (OSIRIS) to facilitate selection of women for bone densitometry, Gynecol Endocrinol., 16, 245–50 (2002)
  36. Kanis J. A., Johnell O., Oden A., Johansson H. and McCloskey E., FRAX and the assessment of fracture probability in men and women from the UK, Osteoporos Int., 19, 385-97 (2008)
  37. Ettinger B., Black D. M., Dawson-Hughes B., Pressman A. R. and Melton L. J. 3rd., Updated fracture incidence rates for the US version of FRAX, Osteoporos Int., 21, 25-33 (2010)