6th International Virtual Congress (IVC-2019) And Workshop.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Octahedral platinum (IV) complexes of mixed piperaquine, sulfadoxine and pyrimethamine: synthesis, spectroscopy, antioxidant and antibacterial studies

Author Affiliations

  • 1Department of Chemical, Geological and Physical Sciences, Kwara State University, Malete, Nigeria
  • 2Department of Chemical, Geological and Physical Sciences, Kwara State University, Malete, Nigeria
  • 3Department of Chemistry, University of Ilorin, Ilorin, Nigeria
  • 4Department of Chemistry, Cape Pennisula University of Technology, Cape Town, South Africa
  • 5Department of Chemical, Geological and Physical Sciences, Kwara State University, Malete, Nigeria

Res.J.chem.sci., Volume 9, Issue (3), Pages 24-39, July,18 (2019)

Abstract

Synthesis of coordination compounds of Pt (IV) with mixed piperaquine-sulfadoxine and piperaquine-pyrimethamine has been carried out by 1:1:1 stochiometry ratio of ligands to metal ion. Characterization of the synthesized complexes was carried out using solubility evaluation, determination of melting point, elemental analysis, UV-visible spectrophotometry, FTIR, 1H NMR, 13C NMR, DEPT-135 and XRD spectroscopy. FTIR spectral data suggest that all the ligands behaved as bidendate ligands with pyrimethamine coordinates to the metal centre through (N-H) and (C-Cl); sulfadoxine through (N-H) and (S=O); piperaquine through (N-H) and (C-Cl). The electronic spectra also revealed that the metal center moiety is six-coordinate with octahedral geometry. The XRD data obtained established the crystal profile and novelty of the metal complexes synthesized. Antioxidant studies carried out using DPPH with ascorbic acid as standard shows metal complexes to be promising antioxidant agents with the IC50 values of 543, 1031. In vitro antibacterial screening of the ligands and synthesized metal complexes were evaluated against Escherichia coli, Staphylococcus aureus and Bacteria anthrancitis using agar diffusion technique. The results obtained reveal that synthesized metal complexes showed enhanced antibacterial activities when compared to the parent ligands and compete well with oxytetracyclin, a renowned antibiotic.

References

  1. Joel T. (2007)., Piperaquine: Bioanalysis, Drug Metabolism and Pharmacokinetics., Elsevier Ltd, American Society for Pharmacology and Experimental Therapeutics (ASPET), and American Society for Microbiology, 1, 1-71. ISBN: 978-91-628-7233-5
  2. Ayipo Y.O., Obaleye J.A. and Badeggi U.M. (2017)., Novel metal complexes of mixed piperaquine-acetylsalicylic acid; synthesis, characterization and anti microbial activities., J.Turkishchemical society, 4(1), 313-326. http://dx.doi.org/10.18596/jotcsa.287331
  3. Pubchem Open Chemistry Data base (2018)., Piperaquine, Sulfadoxine, Pyrimethamine., https://pubchem.ncbi.nlm.nih.gov/compound/
  4. Shruti S.S., Jadhav W.N., Khade B.C. and Arbad B.R. (2014)., Synthesis, Characterization and Antimicrobial Study of Some 3d Metal Complexes of Sulfadoxine., International Journal of ChemTech Research, 6(4), 2291-2294. http://www.sphinxsai.com/framesphinxsaichemtech.htm
  5. Thaitong S. (1983)., Clones of different sensitivities in drug resistant isolates of plasmodium Falciparum., J. Bull W.H.O, 61(4), 709-712. www.malariaresearch.eu
  6. Rafique S., Idrees M., Nasim A., Akbar H. and Athar A. (2010)., Transition metal complexes as potential therapeutic agents., J. Biotechnol. Mol. Biol. Rev., 5(2), 38-45. http://www.academicjournals.org/BMBR
  7. Adedeji J.F., Olayinka E.T., Adebayo M.A. and Babatunde O. (2009)., Antimalarial mixed ligand metal complexes: synthesis, physicochemical and biological and biological activities., J.phys.sci., 4(9), 529-534. http://www.academicjournals.org/ijps
  8. Peter A. A. and Gabriel K. (2008)., Synthesis, characterization, antiplasmodial and antitrypanosomal activity of some metal(III) complexes of sulfadiazine., Bulletin of the Chemical Society of Ethiopia, 22(2), 261-268. DOI: 10.4314/bcse.v22i2.61295
  9. Varbanov H., Valiahdi S.M., Legin A.A., Jakupec M.A., Roller A., Galanski M. and Keppler B.K. (2011)., Synthesis and characterization of novel bis (carboxylato) dichloridobis (ethylamine) platinum (IV) complexes with higher cytotoxicity than cisplatin., European journal of medicinal chemistry, 46(11), 5456-5464. 10.1016/j.ejmech.2011.09.006
  10. Osunniran W.A., Obaleye J.A., Ayipo Y.O., Rajee A.O. and Enemose E.A. (2018)., Six Coordinate Transition Metal (II) Complexes of Mixed Ligands of Eflornithine Hydrochloride Hydrate and 2, 2-Bipyridine: Synthesis, Characterization and Antibacterial Study., Jordan Journal of Chemistry, 13(3), 149-157.
  11. Egan T.J., Koch K.R., Swan P.L., Clarkson C., Van Schalkwyk D.A. and Smith P.J. (2004)., In vitro antimalarial activity of a series of cationic 2, 2 '-bipyridyl-and 1, 10-phenanthrolineplatinum (II) benzoylthiourea complexes., Journal of medicinal chemistry, 47(11), 2926-2934. https://pubs.acs.org/doi/abs/10.1021/jm031132g
  12. Kasˇparkova J., Novakova O., Vrána O., Intini F., Natile G. and Brabec V. (2006)., Molecular aspects of antitumor effects of a new platinum (IV) drug., Molecular pharmacology, 70(5), 1708-1719. 10.1124/mol.106.027730
  13. Jeffery G.H., Bassett J., Mendham J. and Denney R.C. (1989)., Quantitative Chemical Analysis., 5th Ed., John Wiley & Sons Inc., New York, 339, 480-485.
  14. Cervato G., Carabelli M., Gervasio S., Cittera A., Cazzola R. and Cestaro B. (2000)., Antioxbdant properties of oregano (Origanum vulgare) leaf extracts., Journal of Food Biochemistry, 24(6), 453-465. https://onlinelibrary.wiley.com/doi/abs/ 10.1111/j.1745-4514.2000.tb00715.x
  15. Obaleye J.A., Amolegbe S.A. and Gbotoso G.O. (2006)., Synthesis and characterization of some metal complexes against malaria parasite., J.Sci & National Development., 114-119.
  16. Majthoub A., Elsewedy E.M., El-Sayed M.Y., Adam A.M. A. and Refat M.S. (2017)., Synthesis of New Cadmium (II) Antipyretic Drug., research journal of pharmaceutical biological and chemical sciences, 8(1), 639-645. ISSN: 0975-8585.
  17. Gupta H.K. and Dikshit S.K. (1985)., Palladium (II), platinum (II) and platinum (IV) complexes of 2-mercapto-3-phenyl-4-quinazolinone: Reactions of palladium (II) chloride and platinum (IV) chloride with 2-mercapto-3-phenyl-4-quinazolinone in the presence and absence of variousN-heterocyclic bases., Transition Metal Chemistry, 10(12), 469-472.
  18. Miessler G.L., Fischer P.J. and Tarr D.A. (2014)., Inorganic Chemistry 5th Edition., Pearson Educ. Inc., USA, 314-320. ISBN-13: 978-0-321-81105-4
  19. Pavia D.L., Lampman G.M. and Kriz G.S. (2001)., Introduction to Spectroscopy 3rd Edition., Thomson Learning Inc., USA, Page 29, 109-152, 167-189, 357. ISBN: 0-03-031961-7
  20. Swihart D.L. and Mason W.R. (1970)., Electronic Spectra of Octahedral Platinum (IV) Complexes., Inorg. Che., 9 (7), 1749-1757. DOI: https://doi.org/10.1021/ic50089a029
  21. Kunkely H. and Vogler A. (1991)., Transition Metal and Rare Earth Compounds., Inorg. Chim Acta, 186, 155, 90. DOI: 10.1007/3-540-44447-5
  22. Al-Adilee K. and Dakheel K. (2018)., Synthesis, Spectral and Biological Studies of Ni(II), Pd(II) and Pt(IV) Complexes with New Heterocyclic ligand Derived from Azo-Schiff Bases Dyes., Eurasian J. Anal Chem, 13(5), em64. https://doi.org/10.29333/ejac/97267
  23. Al-Hazmi A., Warren J., Amartey S.S. and Qin W. (2014)., Discovery, Modification and Production of L4 Lysozyme for Industrial and Medical Uses., International Journal of Biology, 6(4), 9. https://doi.org/10.5539/ ijb.v6n4p45
  24. Jain P.K., Ghosh D., Baer R., Rabani E. and Alivisatos A. P. (2012)., Near-field Manipulation of Spectroscopic Selection Rules on Nanoscale., PNAS, 109(21), 8016- 8019. https://doi.org/10.1073/ pnas.1121319109
  25. UCI. (2018)., Crystal Structure Analysis: X-ray diffraction, Electron diffraction, Neutron diffraction, Essence of diffraction: Bragg's diffraction, Reading., West 5, A/M 5-6, G/S 3. https://www.chem.uci.edu/~lawm/263%204.pdf
  26. Speakman S.A. (2018)., Estimating crystallite size using XRD., MIT Centre for materials science and engineering, 3-8. http://prism.mit.edu/xray
  27. Falak S. (2010)., Crystal Structure Determination I, Pakistan Institute of Engineering and Applied Science., Khwarzimi Science Society. www.khwarzimic.org
  28. Bragg's Law (2018)., Braggs., xlsx. www.ccp14.ac.uk/ ccp/bca-spreadsheets
  29. Gavhane V.S., Rajbhoj A.S. and Gaikwad S.T. (2015)., X-ray Diffraction Study and Biological Analysis of Transition Metal Complexes of N-4-Disubstituted Thiosemicrbazone., Research Journal of Chemical Sciences, 5(12), 33-37. www.isca.in
  30. Rigaku (2018)., Integrated X-ray powder diffraction software for more advanced analysis., Rigaku PDXL XRD analysis software.pdf. www.rigaku.com/service/pdxl
  31. Touchstone (2018)., X-ray Diffraction (XRD) Analysis., INOVATIA. https://thegoodinside.com/wp-content/uploads/ X-ray_Diffraction_Analysis.pdf
  32. Hussain R. and Juneja H.D. (2009)., X-Ray Diffraction Studies of Some Chelate Polymers of Adipic Acid., Int. J. Chem. Sci., 7(2), 632-638. https://www.tsijournals.com/ artiles
  33. Ukey V.V., Rewatkar K.G., Borkar S.D., Bonde A.D., Naz S. and Juneja H.D. (2005)., X-Ray Diffraction Studies of Some Chelate Polymers of Hydroxamic Acid., Int. J. Chem. Sci., 5(2), 229-236. https://www.tsijournals.com/ artiles
  34. Garg A. and Gurao N. (2018)., X-ray Diffraction: Principles and Practice., Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur. https://www.iitk.ac.in/XRD_AGNPG
  35. Qing W., Yan M., Xin L., Shan L. and Hu L. (2015)., X-ray powder diffraction data of piperaquine., Camb. Core J. Powder Diffraction, 30(3), 289-292. https://doi.org/10.1017/S0885715615000524
  36. Hyde T. (2008)., Crystallite Size Analysis of Supported Platinum Catalyst by XRD., Platinum Metals Rev., 52(2), 129-130. DOI: https://doi.org/10.1595/ 147106708X299547
  37. Badakhshan M.P., Subramanion L.J., Lachimanan Y.L., Yeng C. and Sreenivasan S. (2012)., Antioxidant Activity of Methanol Extracts of Different Pats of Lantana camara., Asian Pac J Trop Biomed, 2(12), 960-965. https://dx.doi.org/10.1016%2FS2221-1691(13)60007-6
  38. Naima S., Muhammad R.K. and Maria S. (2012)., Antioxidant activity, total phenolic and total flavonoid contents of whole plant extract Torilis leptophylla L., BMC Complement Altern Med., 12, 221. https://doi.org/10.1186/ 1472-6882-12-221