10th International Science Congress (ISC-2020).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Trace analysis of synthetic pyrethroids: comments on the current state of the art in sampling and chromatographic methods

Author Affiliations

  • 1Department of Chemistry, Faculty of Education, Thamar University, Thamar, Yemen

Res.J.chem.sci., Volume 8, Issue (10), Pages 13-22, October,18 (2018)

Abstract

Synthetic pyrethroids were launched in 1970's, and since then are widely used for pest control due to the advantage of selective activity and relatively lower mammalian toxicity compared to other classes of pesticides. In the present manuscript, the latest developments in sampling methods and quantitative analysis of synthetic pyrethroids are reviewed. Analysis of pyrethroids chromatographic methods viz., GC, HPLC, SFC, GC-MS, GC-MS/MS, LC-MS, and LC-MS/MS was discussed.

References

  1. ATSDR (2017)., Toxicological Profile: Pyrethrins and Pyrethroids., https://www.atsdr.cdc.gov/toxprofiles/TP.asp?id=787&tid=153 (accessed Sep 12, 2017).
  2. COX C. (2002)., Pyrethrins/Pyrethrum., J. Pestic. Reform, 22(1), 14-20.
  3. Woudneh M.B. and Oros D.R. (2006)., Pyrethroids, Pyrethrins, and PiperonylButoxide in Sediments by High-Resolution Gas Chromatography/High-Resolution Mass Spectrometry., J. Chromatogr. A, 1135(1), 71-77.
  4. Lee S., Gan J. and Kabashima J. (2002)., Recovery of Synthetic Pyrethroids in Water Samples during Storage and Extraction., J. Agric. Food Chem., 50(25), 7194-7198.
  5. Bacey J., Spurlock F., Starner K., Feng H., Hsu J., White J., and Tran D.M. (2005)., Residues and Toxicity of Esfenvalerate and Permethrin in Water and Sediment, in Tributaries of the Sacramento and San Joaquin Rivers, California, USA., Bull. Environ. Contam. Toxicol., 74(5), 864-871.
  6. Miyamoto J., Beynon K., Roberts T.R., Hemingway R.J. and Swaine H. (1981)., The Chemistry, Metabolism and Residue Analysis of Synthetic Pyrethroids., Pure Appllied Chem., 53, 1967-2022.
  7. Albaseer S.S., Rao R.N., Swamy Y.V. and Mukkanti K. (2012)., In-Syringe Dispersive Liquid-Liquid Microextraction with Liquid Chromatographic Determination of Synthetic Pyrethroids in Surface Water., J. Anal. Sci. Technol., 3(1), 113-120.
  8. Albaseer S.S., Rao R.N., Swamy Y.V., Mukkanti K. and Bandi B.G. (2011)., Micro Liquid-Liquid Extraction of Synthetic Pyrethroids from Surface Waters for Liquid-Chromatographic Determination., Toxicol. Environ. Chem., 93(7), 1309-1318.
  9. Albaseer S. (2012)., Development of A Reversed-Phase High Performance Liquid Chromatographic Method for Efficient Diastereomeric Separation and Quantification of Cypermethrin, Resmethrin and Permethrin., Res. J. Chem. Sci., 2(10), 26-31.
  10. Chen Z.M. and Wang Y.H. (1996)., Chromatographic Methods for the Determination of Pyrethrin and Pyrethroid Pesticide Residues in Crops, Foods and Environmental Samples., J. Chromatogr. A, 754(1-2), 367-395.
  11. Rial-Otero R., Gaspar E.M., Moura I. and Capelo J.L. (2007)., Chromatographic-Based Methods for Pesticide Determination in Honey: An Overview., Talanta, 71(2), 503-514.
  12. Picó Y., Fernández M., Ruiz M.J. and Font G. (2007)., Current Trends in Solid-Phase-Based Extraction Techniques for the Determination of Pesticides in Food and Environment., J. Biochem. Biophys. Methods, 70(2), 117-131.
  13. Albaseer S.S., Rao R.N., Swamy Y.V. and Mukkanti K. (2010)., An Overview of Sample Preparation and Extraction of Synthetic Pyrethroids from Water, Sediment and Soil., J. Chromatogr. A, 1217(35), 5537-5554.
  14. Albaseer S.S., Mukkanti K., Rao R.N. and Swamy Y.V. (2011)., Analytical Artifacts, Sample Handling and Preservation Methods of Environmental Samples of Synthetic Pyrethroids., TrAC Trends Anal. Chem., 30(11), 1771-1780.
  15. Starner K., White J., Spurlock F. and Kelley K. (2008)., Assessment of Pyrethroid Contamination of Streams in High-Use Agricultural Regions of California., Synthetic Pyrethroids; ACS Symposium Series; American Chemical Society, 991, 72-83.
  16. Chee K., Wong M.K. and LEE H.K. (1999)., SPMEfor the Determination of Organochlorine Pesticides in Natural Waters., Applications of Solid Phase Microextraction, 5, 212.
  17. Gunold R., Schäfer R.B., Paschke A., Schüürmann G. and Liess M. (2008)., Calibration of the Chemcatcher® Passive Sampler for Monitoring Selected Polar and Semi-Polarpesticides in Surface Water., Environ. Pollut., 155, 52-60.
  18. Mills G.A., Gravell A., Vrana B., Harman C., Budzinski H., Mazzella N. and Ocelka T. (2014)., Measurement of Environmental Pollutants Using Passive Sampling Devices - an Updated Commentary on the Current State of the Art., Environ. Sci. Process. Impacts, 16(3), 369-373.
  19. Barcelo D. and Hennion M.C. (2003)., Trace Determination of Pesticides and Their Degradants Products in Water., 2nd ed.; Elsevier Science B.V: USA.
  20. Erney D.R., Gillespie A.M., Gilvydis D.M. and Poole C.F. (1993)., Explanation of the Matrix-Induced Chromatographic Response Enhancement of Organophosphorus Pesticides during Open Tubular Column Gas Chromatography with Splitless or Hot on-Column Injection and Flame Photometric Detection., J. Chromatogr. A, 638(1), 57-63.
  21. Rose G. and Kibria G. (2005)., Pesticide Monitoring in Goulburn-Murray Water's Irrigation Supply Channels Covering the Six Irrigation Areas [2004-2005 Irrigation Season Study Report]., Department of Primary Industries: Victoria, Australia, 34.
  22. González F.E., Torres M.H., López E.A., Cuadros-Rodrıguez L. and Vidal J.M. (2002)., Matrix-effects of vegetable commodities in electron-capture detection applied to pesticide multiresidue analysis., Journal of Chromatography a, 966(1-2), 155-165.
  23. Huckins J.N., Manuweera G.K., Petty J.D., Mackay D. and Lebo J.A. (1993)., Lipid-Containing Semipermeable Membrane Devices for Monitoring Organic Contaminants in Water., Environ. Sci. Technol., 27(12), 2489-2496.
  24. Scoy-DaSilva A.V., Poulsen A. and Tjeerdema R. (2014)., The Potential of POCIS and SPMD Passive Samplers to Measure Pesticides in California Surface Waters; 11-C0115., Department of Environmental Toxicology University of California, Davis: California, 47.
  25. Yates K., Davies I., Webster L., Pollard P., Lawton L. and Moffat C. (2007)., Passive Sampling: Partition Coefficients for a Silicone Rubber Reference Phase., J. Environ. Monit., 9(10), 1116-1121.
  26. Ahrens L., Daneshvar A., Lau A.E. and Kreuger J. (2015)., Characterization of Five Passive Sampling Devices for Monitoring of Pesticides in Water., J. Chromatogr. A, 1405, 1-11.
  27. Zhang Z., Troldborg M., Yates K., Osprey M., Kerr C., Hallett P.D., Baggaley N., Rhind S.M., Dawson J.J.C. and Hough R.L. (2016)., Evaluation of Spot and Passive Sampling for Monitoring, Flux Estimation and Risk Assessment of Pesticides within the Constraints of a Typical Regulatory Monitoring Scheme., Sci. Total Environ., 569, 1369-1379.
  28. Xue J., Liao C., Wang J., Cryder Z., Xu T., Liu F. and Gan J. (2017)., Development of Passive Samplers for in Situ Measurement of Pyrethroid Insecticides in Surface Water., Environ. Pollut. Barking Essex, 224, 516-523.
  29. Hajšlová J., Holadová K., Kocourek V., Poustka J., Godula M., Cuhra P. and Kempný M. (1998)., Matrix-Induced Effects: A Critical Point in the Gas Chromatographic Analysis of Pesticide Residues., J. Chromatogr. A, 800(2), 283-295.
  30. Li H., Vermeirssen E.L.M., Helm P.A., Metcalfe C.D. (2010)., Controlled Field Evaluation of Water Flow Rate Effects on Sampling Polar Organic Compounds Using Polar Organic Chemical Integrative Samplers., Environ. Toxicol. Chem., 29(11), 2461-2469.
  31. Vermeirssen E.L.M., Asmin J., Escher B.I., Kwon J.H., Steimen I. and Hollender J. (2008)., The Role of Hydrodynamics, Matrix and Sampling Duration in Passive Sampling of Polar Compounds with Empore™ SDB-RPS Disks., J. Environ. Monit., 10(1), 119-128.
  32. Kaserzon S.L., Hawker D.W., Booij K., O'Brien D.S., Kennedy K., Vermeirssen E.L.M. and Mueller J.F. (2014)., Passive Sampling of Perfluorinated Chemicals in Water: In-Situ Calibration., Environ. Pollut., 186, 98-103.
  33. Booij K. and Tucca F. (2015)., Passive Samplers of Hydrophobic Organic Chemicals Reach Equilibrium Faster in the Laboratory than in the Field., Mar. Pollut. Bull., 98 (1-2), 365-367.
  34. Coes A.L., Paretti N.V., Foreman W.T., Iverson J.L. and Alvarez D.A. (2014)., Sampling Trace Organic Compounds in Water: A Comparison of a Continuous Active Sampler to Continuous Passive and Discrete Sampling Methods., Sci. Total Environ., 473-474, 731-741.
  35. Fernández M., Picó Y. and Mañes J. (2002)., Analytical Methods for Pesticide Residue Determination in Bee Products., J. Food Prot., 65(9), 1502-1511.
  36. Tadeo J.L., Sánchez-Brunete C., Albero B. and González L. (2004)., Analysis of Pesticide Residues in Juice and Beverages., Crit. Rev. Anal. Chem., 34(3-4), 165-175.
  37. Maguire R.J. (1990)., Chemical and Photochemical Isomerization of Deltamethrin., J. Agric. Food Chem., 38(7), 1613-1617.
  38. Leicht W., Fuchs R. and Londershausen M. (1996)., Stability and Biological Activity of Cyfluthrin Isomers., Pestic. Sci., 48(4), 325-332.
  39. Gonzalez Audino P., de Licastro S.A. and Zerba E. (1999)., Thermal behaviour and biological activity of pyrethroids in smoke‐generating formulations., Pesticide science, 55(12), 1187-1193.
  40. Hussain M. and Perschke H. (1991)., A study of factors affecting the persistence of deltamethrin applied to cotton fabric for tsetse fly control., Chemosphere, 22(7), 677-684.
  41. Ruzo L.O., Holmstead R.L. and Casida J.E. (1977)., Pyrethroid Photochemistry: Decamethrin., J. Agric. Food Chem., 25(6), 1385-1394.
  42. Liu W., Qin S. and Gan J. (2005)., Chiral Stability of Synthetic Pyrethroid Insecticides., J. Agric. Food Chem., 53(10), 3814-3820.
  43. Maštovská K. and Lehotay S.J. (2004)., Evaluation of Common Organic Solvents for Gas Chromatographic Analysis and Stability of Multiclass Pesticide Residues., J. Chromatogr. A, 1040(2), 259-272.
  44. Mao J., Erstfeld K.M. and Fackler P.H. (1993)., Simultaneous Determination of Tralomethrin, Deltamethrin, and Related Compounds by HPLC with Radiometric Detection., J. Agric. Food Chem., 41(4), 596-601.
  45. Yasin M., Baugh P.J., Bonwick G.A., Davies D.H., Hancock P. and Leinoudi M. (1996)., Analytical Method Development for the Determination of Synthetic Pyrethroid Insecticides in Soil by Gas Chromatography-Mass Spectrometry Operated in Negative-Ion Chemical-Ionization Mode., J. Chromatogr. A, 754(1), 235-243.
  46. Ali M.A. and Baugh P.J. (2003)., Sorption-Desorption Studies of Six Pyrethroids and Mirex on Soils Using GC/MS-NICI., Int. J. Environ. Anal. Chem., 83(11), 923-933.
  47. Esteve-Turrillas F.A., Pastor A. and Guardia M. de la. (2006)., Comparison of Different Mass Spectrometric Detection Techniques in the Gas Chromatographic Analysis of Pyrethroid Insecticide Residues in Soil after Microwave-Assisted Extraction., Anal. Bioanal. Chem., 384(3), 801-809.
  48. Wenclawiak B., Otterbach A. and Krappe M. (1998)., Capillary supercritical fluid chromatography of pyrethrins and pyrethroids with positive pressure and negative temperature gradients1., Journal of Chromatography A, 799(1-2), 265-273.
  49. Galera M.M., Martínez D.B., Vázquez P.P. and García M.D.G. (2005)., Online Trace Enrichment to Determine Pyrethroids in River Water by HPLC with Column Switching and Photochemical Induced Fluorescence Detection., J. Sep. Sci., 28(17), 2259-2267.
  50. Chalányová M., Paulechová M. and Hutta M. (2006)., Method of Analysis of a Selected Group of Pyrethroids in Soil Samples using Off-Line Flow-through Extraction and on-Column Direct Large-Volume Injection in Reversed Phase High Performance Liquid Chromatography., J. Sep. Sci., 29(14), 2149-2157.
  51. Hogendoorn E. and van Zoonen P. (2000)., Recent and Future Developments of Liquid Chromatography in Pesticide Trace Analysis., J. Chromatogr. A, 892(1), 435-453.
  52. Picó Y., Blasco C. and Font G. (2004)., Environmental and Food Applications of LC-Tandem Mass Spectrometry in Pesticide-Residue Analysis: An Overview., Mass Spectrom. Rev., 23(1), 45-85.
  53. Steen R.J.C.A., Hogenboom A.C., Leonards P.E.G., Peerboom R.A.L., Cofino W.P. and Brinkman U.A.T. (1999)., Ultra-Trace-Level Determination of Polar Pesticides and Their Transformation Products in Surface and Estuarine Water Samples Using Column Liquid Chromatography-Electrospray Tandem Mass Spectrometry., J. Chromatogr. A, 857(1), 157-166.
  54. Serôdio P. and Nogueira J.M.F. (2005)., Development of a Stir-Bar-Sorptive Extraction-Liquid Desorption-Large-Volume Injection Capillary Gas Chromatographic-Mass Spectrometric Method for Pyrethroid Pesticides in Water Samples., Anal. Bioanal. Chem., 382(4), 1141-1151.
  55. Fritz J.S. (1999)., Analytical Solid-Phase Extraction., Wiley.
  56. Mekebri A., Crane D.B., Blondina G.J., Oros D.R. and Rocca J.L. (2008)., Extraction and Analysis Methods for the Determination of Pyrethroid Insecticides in Surface Water, Sediments and Biological Tissues at Environmentally Relevant Concentrations., Bull. Environ. Contam. Toxicol., 80(5), 455-460.
  57. Hengel M.J., Mourer C.R. and Shibamoto T. (1997)., New Method for Analysis of Pyrethroid Insecticides: Esfenvalerate, and Permethrin, in Surface Waters Using Solid-Phase Extraction and Gas Chromatography., Bull. Environ. Contam. Toxicol., 59(2), 171-178.
  58. van der Hoff G.R., Pelusio F., Brinkman U.A.T., Baumann R.A. and van Zoonen P. (1996)., Automated Solid-Phase Extraction Coupled to Gas Chromatography with Electron-Capture Detection: A Combination of Extraction and Clean-up of Pyrethroids in the Analysis of Surface Water., J. Chromatogr. A, 719(1), 59-67.
  59. You J. and Lydy M.J. (2006)., Determination of Pyrethroid, Organophosphate and Organochlorine Pesticides in Water by Headspace Solid-Phase Microextraction., Int. J. Environ. Anal. Chem., 86(6), 381-389.
  60. Gonçalves C. and Alpendurada M.F. (2002)., Multiresidue Method for the Simultaneous Determination of Four Groups of Pesticides in Ground and Drinking Waters, Using Solid-Phase Microextraction-Gas Chromatography with Electron-Capture and Thermionic Specific Detection., J. Chromatogr. A, 968(1), 177-190.
  61. Beceiro-González E., Concha-Graña E., Guimaraes A., Gonçalves C., Muniategui-Lorenzo S. and Alpendurada M.F. (2007)., Optimisation and Validation of a Solid-Phase Microextraction Method for Simultaneous Determination of Different Types of Pesticides in Water by Gas Chromatography-Mass Spectrometry., J. Chromatogr. A, 1141(2), 165-173.
  62. Fernandez-Alvarez M., Llompart M., Lamas J.P., Lores M., Garcia-Jares C., Cela R. and Dagnac T. (2008)., Simultaneous Determination of Traces of Pyrethroids, Organochlorines and Other Main Plant Protection Agents in Agricultural Soils by Headspace Solid-Phase Microextraction-Gas Chromatography., J. Chromatogr. A, 1188(2), 154-163.
  63. Esteve-Turrillas F.A., Aman C.S., Pastor A. and de la Guardia M. (2004)., Microwave-Assisted Extraction of Pyrethroid Insecticides from Soil., Anal. Chim. Acta, 522(1), 73-78.
  64. Barrionuevo W.R. and Lanças F.M. (2000)., Solid-Phase Microextraction of Pyrethroid Pesticides from Water at Low and Sub-Ppt Levels at Different Temperatures., J. High Resolut. Chromatogr, 23(7-8), 485-488.
  65. Van Hoeck E., David F. and Sandra P. (2007)., Stir BarSorptive Extraction for the Determination of Pyrethroids in Water Samples: A Comparison between Thermal Desorption in a Dedicated Thermal Desorber, in a Split/Splitless Inlet and by Liquid Desorption., J. Chromatogr. A, 1157(1), 1-9.
  66. Fernández-Gutiérrez A., Martínez-Vidal J.L., Arrebola-Liébanas F.J., Gonzalez-Casado A. and Vílchez J.L. (1998)., Determination of Endosulfan and Some Pyrethroids in Waters by Micro Liquid-Liquid Extraction and GC-MS., Fresenius J. Anal. Chem., 360(5), 568-572.
  67. Sánchez-Brunete C., Albero B., Martín G. and Tadeo J.L. (2005)., Determination of Pesticide Residues by GC-MS Using Analyte Protectants to Counteract the Matrix Effect., Anal. Sci., 21(11), 1291-1296.
  68. Lyytikäinen M., kkonen J.V.K. and Lydy M.J. (2003)., Analysis of Pesticides in Water and Sediment Under Different Storage Conditions Using Gas Chromatography., Arch. Environ. Contam. Toxicol., 44(4), 437-444.
  69. Casas V., Llompart M., Garcia-Jares C., Cela R. and Dagnac T. (2007)., Effects of Sample Pretreatment and Storage Conditions in the Determination of Pyrethroids in Water Samples by Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry., Anal. Bioanal. Chem., 387(5), 1841-1849.
  70. You J., Weston D.P. and Lydy M.J.A. (2004)., Sonication Extraction Method for the Analysis of Pyrethroid, Organophosphate, and Organochlorine Pesticides from Sediment by Gas Chromatography with Electron-Capture Detection., Arch. Environ. Contam. Toxicol., 47(2), 141-147.
  71. Amelung W., Alexander N. and Laabs V. (2007)., Multiresidue Determination of Pesticides in Acid-Clay Soils from Thailand., J. AOAC Int., 90(6), 1659-1669.
  72. Gil García M.D., Barranco Martínez D., Martínez Galera, M. and Parrilla Vázquez P. (2006)., Simple, Rapid Solid-Phase Extraction Procedure for the Determination of Ultra-Trace Levels of Pyrethroids in Ground and Sea Water by Liquid Chromatography/Electrospray Ionization Mass Spectroscopy., Rapid Commun. Mass Spectrom., 20(16), 2395-2403.
  73. Brouwer E.R., Struys E.A., Vreuls J.J. and Brinkman U.A.T. (1994)., Automated Determination of Pyrethroid Insecticides in Surface Water by Column Liquid Chromatography with Diode Array UV Detection, Using on-Line Micelle-Mediated Sample Preparation., Fresenius J. Anal. Chem., 350(7-9), 487-495.
  74. Vázquez P.P., Mughari A.R. and Galera M.M. (2008)., Application of Solid-Phase Microextraction for Determination of Pyrethroids in Groundwater Using Liquid Chromatography with Post-Column Photochemically Induced Fluorimetry Derivatization and Fluorescence Detection., J. Chromatogr. A, 1188(2), 61-68.
  75. Loper B.L. and Anderson K.A. (2003)., Determination of Pyrethrin and Pyrethroid Pesticides in Urine and Water Matrixes by Liquid Chromatography with Diode Array Detection., J. AOAC Int., 86(6), 1236-1240.