10th International Science Congress (ISC-2020) will be Postponed to 8th and 9th December 2021 Due to COVID-19.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Synthesis, Spectral Characterization and Antibacterial Assay: Co(II) Coordination Compounds of 4-Aminoantipyrine based Macrocyclic Ligands

Author Affiliations

  • 1Department of Chemistry, Osmania University, Hyderabad, Telangana State, India

Res.J.chem.sci., Volume 6, Issue (7), Pages 35-47, July,18 (2016)

Abstract

A new series of tetra dentate N4 donor macrocyclic Schiff bases L1-L5 were synthesized by condensation reaction between thederivative of 4-aminoantipyrine(L) and a variety of diamines such as 1,4-diamino butane, carbanohydrazide,4H-1,2,4-traizole-3,5-diamine,2-amino benzohydrazide and naphthalene-1,8-diamine respectively. Macrocyclic Schiff base ligands L1-L5 were further treated with cobalt chloride to yield Co(II) complexes(CoL1-CoL5). All these newly prepared ligands and complexes have been characterized with the help of Mass, Infra-Red, 1H & 13C NMR, Electronic spectral, Elemental magnetic, Molar conductance and Thermal studies. Macrocycles and complex compounds were screened to evaluate antibacterial property in opposition to some cultured microbes. Inhibition zones are measured further minimum inhibitory concentrations determined, compared with existing drugs.

References

  1. Raman N., Johnson Raja S. and Sakthivel A. (2010)., Transition meal complexes with Schiff-base ligands:4-aminoantipyrene based derivatives-a review., J. Coord. Chem., 62, 691-709.
  2. Raman N., Kulandaisamy A. and Thangaraja C. (2004)., Synthesis, structural characterization and electrochemical and antibacterial studies of Schiff base copper complexes., Transition Met. Chem., 29, 129-135.
  3. Guerreiro P., Tamburini S., Vigato P.A., Russo U. and Benelli C. (1993)., Mossabauer and magnetic properties of mononuclear, homo- and hetero-dinuclear complexes., Inorg. Chim. Acta, 213, 279-287.
  4. Okawa H., Furutachi H. and Fenton D.E. (1998)., Heterodinuclear metal complexes of phenol-based compartmental macrocycles., Coord. Chem. Rev., 174, 51-75.
  5. Guerreiro P., Tamburini S. and Vigato V.A. (1995)., From mononuclear to polynuclearmacrocyclic or macrocyclic complexes., Coord. Chem. Rev., 139, 17-243.
  6. Canali L. and Sherrington D.C. (1999)., Utilisation of homogeneous and supported chiral metal (salen) complexes in asymmetric catalysis., Chem. Soc. Rev., 28, 85-93.
  7. Fenton D.E. and Vigato P.A. (1988)., Macrocyclic Schiff base complexes of lanthanides and actinides., Chem. Soc. Rev., 17, 69-90.
  8. Vigato P.A., Tamburini S. and Fenton D.E. (1990)., The activation of small molecules by dinuclear complexes of copper and other metals., Coord. Chem. Rev., 106, 25-170.
  9. Gopalakrishnan J., Patel C.C. and Ravi A. (1967)., Studies of pentakisantipyrine Copper (II) perchlorate., Bull. Chem. Soc. Japan, 40, 791.
  10. Bose K.S. and Patel C.C. (1970)., Cu( II) complexes of 1-benzyl-2-phenyl-benzimidazole., J. Nucle. Chem., 32(4), 1141-1146.
  11. Agarwal R.K. and Prasad S. (2005)., Synthesis, spectral and thermal invastigations of some mixed ligand complexes of thorium (IV) derived from semicarbzones and diphenyl sulfoxide., J. Iran. Chem. Soc., 2, 168-175.
  12. Raman N. Thalamuthu S., Dhaveethu Raja J., Neelakandan M.A. and Banerjee S. (2008)., DNA cleavage and antimicrobial activity studies of transition metal(II) complexes of 4-aminoantipyrine derivative., J. Chi. Chem. Soc., 53, 1450-1454.
  13. Hitoshi T., Tamao N., Hideyyki A., Manabu F. and Takayuki M. (1997)., Preparation and characterization of novel cyclic tetranuclear manganese (III) complexes: MnIII4(X-salmphen)6 (X-salmphenH2 = N,N′-di-substituted-salicylidene-1,3-diaminobenzene (X = H, 5-Br)., Polyhedron, 16, 3787-3794.
  14. Rosu T., Pasculescu S., Lazar V., Chifiriuc C. and Cernat R. (2006)., Copper (II) Complexes with Ligands derived from 4-Amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one: Synthesis and Biological Activity., Molecules, 11(11), 904-914.
  15. Raman N., Johnson Raja S., Joseph J. and Raja J.D. (2007)., Synthesis, spectral characterization and DNA cleavage study of heterocyclic Schiff base metal complexes., J. Chil. Chem. Soc., 52(No 2), 1138-1141.
  16. Ismail K.Z., Dissouky A.E. and Shehada A.Z. (1997)., Spectroscopic and magnetic studies on some copper (II) complexes of antipyrine Schiff base derivatives., Polyhedron, 16(17), 2909-2916.
  17. Choi Y.K., Chjo K.H., Park S.M. and Doddapaneni N. (1995)., Oxygen Reduction at Co(II)2 –Disalophen Modified Carbon Electrodes., J. Electrochem. Soc., 142, 4107-4112.
  18. Katia B., Simon L., Anne R., Gerard C., Francoise D. and Bernard M. (1996)., Synthesis and Characterization of New Chiral Schiff Base Complexes with Diiminonaphthyl or Diiminocyclohexyl Moieties as Potential EnantioselectiveEpoxidation Catalysts., Inorg. Chem., 35(2), 387-396.
  19. Keppler B.K., Friesen C., Moritz H.G., Vongerichten H. and Vogel E. (1991)., Tumor-inhibiting bis(b-Diketonato) meta; complexes. Budotitane, cis-diethoxybis(1-phenylbutane-1,3-dionato)titanium(IV)., Struct. Bond., 78, 97-127.
  20. Dharmaraj N., Viswanathamurthi P. and Natarajan K. (2001)., Ruthenium (II) complexes containing bidentate Schiff bases and their antifungal activity., Transition Met. Chem., 26(1), 105-109.
  21. Raman N., Kulandaisamy A., Thangaraja C. and Jeyasubramanian K. (2003)., Redox and antimicrobial studies of transition metal (II) tetradentate Schiff base complexes., Transition Met. Chem., 28(1), 29-36.
  22. Muralidhar Reddy P., Shanker K., Srinivas V., Ravi Krishna E., Rohini R., Srikanth G., Hu, A. and Ravinder, V. (2015)., Hydrolysis of Letrozole by macrocyclic Rhodium (I) Schiff-base complexes., Spectrochim. Acta A, 139, 43-48.
  23. Alam S. (2004)., Synthesis, antibacterial and antifungal activity of some derivatives of 2-phenyl-chromen-4-one., Ind. Acad. Sci., J. Chem. Sci., 166(6), 325-331.
  24. Cushine T.P.T. and Lamb A.J. (2005)., Antimicrobial activity of flavonoids., Inter. J. Antimicrobial Agents, 26, 343-356.
  25. Salmon S.A., Watts J.L. and Cheryal A. (1995)., Comparision of MICs of Ceftiofur and Other Antimicrobial Agents against Bacterial Pathogens of Swine from the United States, Canada and Denmark., J. Clin. Microbiol., 33(9), 2435-2444.
  26. Mallie M., Bastide J.M., Blancard A., Bonni A., Bretagne S., Cambon M., Chandenier J., Chauveau V., Couprie B., Darty A., Feuilhade M., Grillot C., Guiguen C., Lavarde V., Letscher V., Linas M.D., Michel A., Morin O., Paugam A., Piens M.A., Raberin., Tissot E., Toubas D. and Wade A. (2005)., In Vitro susceptibility testing of Candida and Aspergillus spp. to voriconazole and other agents using Etest. Results of a French multicentre study., Inter. J. Antimicrobial Agents, 25(4), 321-328.
  27. Omrum U., Arikan S., Kocagoz S., Sancak B. and Unal S. (2000)., Susceptibility testing of voriconazole, fluconazole, itraconazole and amphotericine B against yeast isolates in a Turkish University Hospital and effect of time of reading., Diagno. Microbio. Infect. Diseases, 38, 101-107.
  28. Mendham J, Denney RC, Barnes J.D, Thomas J.K. (2004)., Vogel’s Text book of Quantitative Chemical Analysis., Pearson Education, India, ISBN:10-058222628713-978-058222628-9.
  29. Shakir M., Chishti H.T.N. and Chingsubam P. (2006)., Metal ion-directed synthesis of 16-membered tetraazamacrocyclic complexes and their physico - chemical studies., Spectrochim. Acta, 64(A), 512-517.
  30. Raman N., Raja J.D. and Sakthivel A. (2007)., Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies., J. Chem. Sci., 119(4), 303-310.
  31. Rajasekar K., Ramachandramoorthy T. and Paulraj A. (2012)., Microwave Assisted Synthesis, Structural Characterization and Bilogical Activities and Thiocyanate Mixed Ligand Complexes., Res. J. Pharmaceutical Sci.1(4), 22-27.
  32. Thomas M., Nair M.K.M. and Radhakrishan R.K. (1995)., Rare earth iodide complexes of 4-(2’,4’-dihydroxyphenylazo) antipyrene., Synth. React. Inorg. Met.-Org. Chem., 25, 471-479.
  33. Mishra L. and Upadhyay K.K. (1992)., Metal directed condensation of ethyl acetoacetate with 1,6-diaminohexane., Ind. J. Chem. 31(A), 642.
  34. Reddy P.M., Ho Y.P., Shanker K., Rohini R. and Ravinder V. (2009)., Physicochemical and biological characterization of novel macrocycles derived from o-phthalaldehyde., Eur. J. Med. Chem., 44, 2621–2625.
  35. Geary W.J. (1971)., The use of conductivity measurements in organic solvents for the characterization of coordination compounds., Coord. Chem. Rev., 7, 81-115.
  36. James E Huheey, Ellen A Keiter and Richard L Keiter (1993)., Inorganic Chemistry: Principle of Structure and Reactivity., 4th Edition, Harper Collins College Publisher, New York. ISBN:10- 006042995X 13-9780060429959.
  37. Colak A.T., Tumer M. and Serin S. (2000)., Nickel ion as a template in the synthesis of macrocyclic imine-oxime complexes from carbonyl compounds and o-phenylenediamine., Transition Met. Chem., 25, 200-204.
  38. Guo L., Hu G. and Wei S. (2012)., Synthesis and Photolumnescent Properties of a Zinc(II) Complex with Phenanthrolline Derivative., Adv. Mate. Res., 496, 38-41.
  39. Tweedy B.G. (1964)., Plant extracts with metal ions as potential antimicrobial agents., Phytopathol. 1964, 55, 910-914.
  40. Atabay N.M.A., Dulger B. and Gucin F. (2005)., Structural characterization and antimicrobial activity of 1,3-bis(2-benzimidazyl)-2-thiapropane ligand and its Pd(II) and Zn(II) halide complexes., Eur. J. Med. Chem., 40, 1096-1102.