8th International Science Congress (ISC-2018).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Thin Film Coating through Sol-Gel Technique

Author Affiliations

  • 1Material/ Organometallics Laboratory, Department of Chemistry, ARSD College, University of Delhi-110021, India
  • 2AIAS, Amity University, Noida, Uttar Pradesh 201313, India
  • 3Maitreyi College, University of Delhi, Bapudham Complex, Chanakyapuri, New Delhi, 110021, India
  • 4Department of Polymer Science, Bhaskaracharya College of Applied Sciences, University of Delhi, Dwarka, New Delhi, 110075, India

Res.J.chem.sci., Volume 6, Issue (7), Pages 65-72, July,18 (2016)

Abstract

Thin film coatings are a much explored domain, since films are well suited for the studies of physical, particularly optical properties and have numerous scientific, technological, and commercial applications. For depositing thin films, a large number of techniques have been used which involves different types of precursors. This review will highlight coating technology utilizing the sol-gel mediated precursor, which delivers high homogeneity, low temperature processing and various other advantages. Besides this, thin film depositing techniques like spin coating, dip coating have also been discussed with their various applications.

References

  1. Bradley D.C., Mehrotra R.C. and Gaur D.C. (1978)., Metal Alkoxides., Academic Press, London, 411, ISBN: 0-12-124250-1.
  2. Niederberger M., Bartl M.H. and Stucky G.D. (2002)., Benzyl alcohol and transition metal chlorides as a versatile reaction system for the non aqueous and low-temperature synthesis of crystalline nano objects with controlled dimensionality., J. Am. Chem. Soc., 124(46), 13642–13643.
  3. Rogojan R., Andronescu E., Gghiţulica C. and Vasile B.S. (2011)., Analysis of structure and morphologyof hydroxyapatite nanopowder obtained by sol-gel and pirosol methods., Advanced material research, 590(1), 63-67.
  4. Murali P. and Sarma G.V.S. (2014)., Studies on HEBM and Sintering Process via Sol-Gel Method on Alumina and Copper Alumina Nanocomposites., International Journal of Engineering Research and Reviews, 2(4), (133-143).
  5. Niederberger M. and Pinna N. (2009)., Metal oxide nanoparticles in organic solvents synthesis, formation, assembly and application., 217, ISBN: 978-1-84882-670-0.
  6. Hench L.L. (1997)., Sol-gel material for bioceramic applications., Curr. Opin. Solid State Mater. Sci., 2, 604-10.
  7. Guzman G., Beteille F., Morineau R. and Livage J. (1996)., Electrical switching in VO2 sol–gel films., J. Mat. Chem., 6, 505-506.
  8. Hench L.L. (1986)., Use of drying control chemical additives (DCCAs) in controlling sol-gel processing. In L. L. Hench and D. R. Ulrich eds. Science of Ceramic Chemical Processing., John Wiley & Sons, Inc. 1986, 52-64.
  9. Babic B., Djokic D. and Krstaji N. (2005)., Characterization of carbon cryogels synthesized by sol-gel polycondensation., J.Serb.Chem.Soc., 70(1), 21-31.
  10. Pierre A.C. and Pajonk G.M. (2002)., Chemistry of aerogel and their application., Chem. Rev, 102, 4243-4265.
  11. Siouffi A.M. (2003)., Silica gel-based monoliths prepared by the sol–gel method: facts and figures., J. Chromatogr. A., 1000, 801-818.
  12. Krumeich F., Muhr H.J., Niderberger M., Bieri F., Schnyder B and Nesper R. (1999)., Morphological and topochemical study of novel vanadium oxide nanotubes., J. Am. Chem.Soc., 121, 8324-8311.
  13. Huizar-Felix A.M., Hernandez T., de la Parra S., Ibarra J. and Kharisov B. (2012)., Sol–gel based Pechini method synthesis and characterization of Sm1-xCaxFeO3 perovskite 0.1≤x≤0.5., Powder Technology, 229, 290–293.
  14. Pierre A.C. (1998)., Introduction to Sol–Gel Processing., Kluwer, Boston.
  15. Cruz M.R.A., Zarzoza G.O., Castanon G.A.M. and Martínez J.R. (2012)., Thin films from different materials obtained by the Sol-Gel method: study of the morphology through Atomic Force Microscopy (AFM)., Current Microscopy Contributions to Advances in Science and Technology, 1370-1376.
  16. Znaidi L. (2010)., Sol–gel-deposited ZnO thin films: A review., Materials Science and Engineering B, 174, 18-30.
  17. Chai C., Ben-Nissan B., Pyke S. and Evans L. (1995)., Sol-gel derived hydroxyapatite coatings for biomedical applications., Mater. Manuf. Process., 10, 205-216.
  18. Choi A.H. and Ben-Nissan B. (2014)., Advancement of sol-gel technology and nanocoatings in Australia., Journal of the Australian Ceramics Society, 50, 121-136.
  19. Geffcken W. and Berger E. (1939)., Verfahren zur änderung des reflexionsvermögens optischer gläser., German Patent, 736411.
  20. Roy D.M. and Roy R. (1995)., An experimental study of the formation and properties of synthetic sepentines and related layer silicates., Am. Mineral, 39, 957-975.
  21. Schroeder H. (1965)., Water-dispersed industrial and architectural coatings., Paint Varnish Prod., 55, 31-46.
  22. Coradin T. and Livage J. (2006)., Sol-gel synthesis of of solids., Encyclopedia of inorganic chemistry.
  23. Alhamed M. and W. Abdullah W. (2010)., Structural and optical properties of ZnO:Al films prepared by the sol–gel method., Journal of Electron Devices, 7, 246- 252.
  24. Dislich H. (1971)., New Routes to Multicomponent Oxide Glasses., Angew.Chem. (Engl), 10, 363-370.
  25. Sakka S. (2003)., Yogyo- Kyokai- Shi., J. Sol -Gel and Tech., 85, 299.
  26. Schroeder WC, et. all (1961)., Apparatus for feeding finely divided solids., United State Patent, 3001652.
  27. Dislich H. and Hinz P. (1982)., History and principles of sol-gel process, and some new multicomponent oxides coatings., Journal of Non-Crystalline Solids, 48, 11-16.
  28. Mackenzie J.D. (1988)., Applications of the Sol-Gel Process., Journal of Non-Crystalline Solids, 100, 162-168.
  29. Schmidt H. (1988)., Chemistry of material preparation by sol-gel process., Journal of Non-Crystalline Solids, 100, 51-64.
  30. Wang D. and Bierwagen G.P. (2009)., Sol–gel coatings on metals for corrosion protection., Progress in Organic Coatings, 64, 327-338.
  31. Miyazawa K., Suzuki K. and Wey M.Y. (1995)., Microstructure and Oxidation-Resistant Property of Sol-Gel-Derived ZrO2-Y2O3 Films Prepared on Austenitic Stainless Steel Substrates., J. Am. Ceram. Soc., 78, 347-355.
  32. Dislich H. and Hussamann E. (1981)., Amorphous and crystalline dip coatings obtained from organometallic solutions: Procedures, chemical processes and products., Thin Solid films., 77, 129-139.
  33. Aegerter M.A. and Mennig M. (2004)., Sol–Gel Technologies for Glass Producers and Users., Kluwer Academic Publishers, Norwell, Mass., 37-48.
  34. Lou X.B., Shen H.L. and Zhang H. (2007)., Optical Properties of Nanosized ZnO Films Prepared by Sol-Gel Process., Transactions of Nonferrous Metals Society of China, 17, 814-817.
  35. Shakti N. and Gupta P.S. (2010)., Structural and Optical Properties of Sol-gel Prepared ZnO Thin Film., Applied Physics Research, 2(1), 19-28.
  36. Moncada E., Quijada R. and Retuert J. (2007)., Nanoparticles prepared by the sol–gel method and their use in the formation of nanocomposites with polypropylene., Nanotechnology, 18, 335606, 1-7.
  37. Schmidt H.K., Geiter E., Mennig M., Krug H., Becker C. and Winkler R.P. (1998)., The sol-gel process for nano technologies: nanocomposites with interesting optical and mechanical properties., Journal of Sol-Gel Science and Tech., 13, 397-404.
  38. Attia S.M., Wang J., Wu G., Shen J. and Ma J. (2002)., Review on Sol—Gel Derived Coatings: Process, Techniques and Optical Applications., J. Mater. Sci. Technol., 18(3), 211-218.
  39. Dimitriev Y., Ivanova Y. and Iordanova R. (2008)., History of sol-gel science and technology., Journal of the University of Chemical Technology and Metallurgy, 43(2), 181-192.
  40. Mackenzie J.D. (1988)., Applications of the Sol-Gel Process., Journal of Non-Crystalline Solids, 100, 162-168.
  41. Bressanone (2006)., Coatings., Universita Degli Studi Di Padova, Italy, http://www.chimica.unipd.it/offerte/pubblica /dottorato /coatings.pdf.
  42. Cruz M.R.A., Zarzoza G.O., Castanon G.A.M. and Martínez J.R. (2012)., Thin films from different materials obtained by the Sol-Gel method: study of the morphology through Atomic Force Microscopy (AFM)., Current Microscopy Contributions to Advances in Science and Technology, 2, 1370-1376.
  43. Brinker C.J., Hurd A.J., Frye G.C., Ward K.J. and Ashley C.S. (1990)., Sol-gel thin-film formation., Journal of Non-Crystalline Solids, 121, 294-302.
  44. Bornside D.E., Macosko C.W. and Scriven L.E. (1989)., Spin coating: Onedimensional model., Journal of Applies Physics, 66, 5185-5193.
  45. Wani I.A., Khatoon S., Ganguly A., Ahmed J., Ganguli A.K. and Ahmad T. (2010)., Silver nanoparticles: Large scale solvothermal synthesis and optical properties., Materials Research Bulletin, 45(8), 1033-1038.
  46. Sadekar H.K., Ghule A.V. and Sharma R. (2013)., Nanocrystalline ZnSe thin films prepared by solution growth technique for photosensor application., Composites: Part B, 44(1), 553–557.
  47. Benlarbi M., Farre C., Chaix C., Lawrence M.F., Blum L.J., Lysenko V. and Marquette C.A. (2010)., Semiconducting properties of thin films with embedded nanoparticles., Synthetic Metals, 163(23-24), 2675–2680.
  48. Shen G.X., Chen Y.C. and Lin C.J. (2005)., Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method., Thin Solid Films, 489,130-136.
  49. Jin Z., Zhou H., Jin Z.L., Savinell R.F. and Liu C. (1998)., Application of nano-crystalline porous tin oxide thin film for CO sensing., Sensors and Actuators B, 52, 188–194.
  50. Jiang Y., Yan Y., Zhang W., Ni L., Sun Y. and Yin H. (2011)., Synthesis of cauliflower-like ZnO–TiO2 composite porous film and photoelectrical properties., Applied Surface Science, 6583–6589.
  51. A. Murakami, A., Yamaguchi, T., Hirano, S., Kikuta, K., Murakami, A., Yamaguchi, T., Hirano, S. and Kikuta, K. (2008)., Synthesis of porous titania thin films using carbonatation reaction and its hydrophilic property., Thin Solid Films, 516(12), 3888-3892.