9th International Science Congress (ISC-2019).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Quantum-chemical Modeling of the Stacking mechanism for the 1H-4H Proton transfer in Pyridine derivatives. A DFT study

Author Affiliations

  • 1Department of Chemistry, Ivane Javachishvili Tbilisi State University, 0179, Georgia
  • 2Department of Chemistry, Ivane Javachishvili Tbilisi State University, 0179, Georgia
  • 3Department of Chemistry, Suchumi State University, 0186, Georgia

Res.J.chem.sci., Volume 6, Issue (3), Pages 66-68, March,18 (2016)

Abstract

The stacking mechanism of the 1H-4H proton transfer in 4-pyridone, 4-pyridinthione and p-amino-pyridine are constructed. For quantitative description of this process by means of the quamtum-chemical method density functional theory (DFT) the activation energy (&

References

  1. Kereselidze J., Zarqua T., Kikalishvili T., Churgulia E. and Makaridze M. (2002)., Some new views on the tautomerization mechanism., Russ. Chem. Rev., 71, 993-1003.
  2. Schlegel H., Gund P. and Fluder E. (1982)., Tautomerization of formamid, 2-pyridone, and 4-pyridone: an ab initio study., J Am Chem Soc, 104(20), 5347-5351.
  3. Kereselidze J. and Zarqua T. (2000)., Features of the tautomerism of some α – substituted pyridine., Chem Heter Comp, 36(10), 1161-1163.
  4. Churgulia E. and Kereselidze J. (2005)., Dimer mechanism for the tautomeric conversion of 4-amino-2-oxopirimidine., Chem Heter Comp, 41(4), 481-484.
  5. Alkorta I. and Elguero J. (2002)., Influence of intermolecular hydrogen bond on the Tautomerism of Pyridine Derivatives., J Org Chem, 67(5), 1515-1519.
  6. Kereselidze J., Pachulia Z. and Zarqua T. (2009)., Quantum-chemical description of the protopropic tautomerism of pyrimidine bases., Chem Heter Comp, 45(6), 680.
  7. Teterin Yu and Nikolenko L. (1973)., A study of imidazole by the proton magnetic resonance method., Chemistry of Heterocyclic Compounds, 6 (6), 750-753.
  8. Kereselidze J., Pachulia Z. and Zarqua T. (2006)., Correlation of the physic-chemical parameters., Chem Heter Comp, 42, 918.
  9. Kohn W. and Sham L. (1965)., Density-functional exchange-energy approximation., Phys Rev A. 140, 1133.
  10. Perdew J., Burke K. and Ernzerhof M. (1996)., Generalized Gradient Approximation Made Simple., Phys Rev Lett., 77(18), 3865.
  11. Adamo C. and Barone V. (2002)., Physically motivated Density functional with improved performances: The modified Perdew–Burke–Ernzerhof model., J. Chem. Phys., 116, 5933.
  12. Becke A. (1988)., Density: functional exchange-energy approximation with correct asymptotic behavior., Phys Rev A, 38(6), 3098.
  13. Lee C., Yang W. and Parr R. (1988)., Development of the Coole-Salveti correlation- energy formula into a functional of the electron density., Phys. Rev. B 37(2), 785-789.
  14. Laikov D, Ustynyuk Yu and Priroda A. (2005)., Quantum-Chemical program suite. New Possibilities in the study molecular system with the application of paraller computing., Russ. Chem. Bull., 54(3), 820-826.