6th International Young Scientist Congress (IYSC-2021) and workshop on Intellectual Property Rights on 8th and 9th May 2021.  10th International Science Congress (ISC-2020) will be Postponed to 8th and 9th December 2021 Due to COVID-19.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

α-Benzoin Oxime as the complexing agent for the estimation of small amount of Nickel (II) without extraction

Author Affiliations

  • 1St. Aloysius College, India
  • 2Srinivas Institute of Technology, Valachil, India
  • 3St. Aloysius College, India

Res.J.chem.sci., Volume 10, Issue (2), Pages 38-45, June,18 (2020)


A selective and sensitive complexing reagent, α-benzoin oxime gives orange colour complex with ammoniacal Nickel(Ni(II)) at pH 9 in the existence of non-ionic surfactant Triton-X-100 in an aqueous medium. Detection of Ni(II) in distinct water samples and in alloys can be done using this highly selective complexing agent with low cost and with accurate results by spectrophotometric method. The spectrophotometric method of estimation of Ni(II) was carried out at pH 9. The maximum absorbance was found to be at 422nm. Ni(II)- α-benzoin oxime complex obeys Beer's law. The influence of various category of surfactants and the quantity of it is studied. The composition of the complex was found by Job\'s method and mole ratio method.


  1. Wiley-VCH, Weinheim. Lascelles, K., Morgan, L. G., Nicholls, D., Beyersmann, D., & Institute, N. (2000)., Nickel compounds., Ullmann
  2. American Plumbing Practice: From the Engineering Record (Prior to 1887 the Sanitary Engineer.) (2016)., A Selected Reprint of Articles Describing Notable Plumbing Installations in the United States, and Questions and Answers on Problems Arising in Plumbing and House Draining. With Five Hundred and Thirty-six Illustrations., Engineering record 1896. 119. Archived from the original on December 1, 2016. Retrieved May 28, 2016.
  3. Khan, A. R., & Awan, F. R. (2014)., Metals in the pathogenesis of type 2 diabetes., Journal of Diabetes & Metabolic Disorders, 13(1), 16.
  4. K. Hussain Reddy, N.B.L. Prasad and T. Sreenivasulu Reddy (2003)., Analytical properties of 1-phenyl-1, 2-propanedione-2-oxime thiosemicarbazone: simultaneous spectrophotometric determination of copper (II) and nickel (II) in edible oils and seeds., Talanta, 59(3), 425-433.
  5. R. B. Singh and H. Ishii (1991)., Analytical potentialities of thiosemicarbazone and semicarbazones., Crit. Rev. Anal. Chem., 22(5), 381-409.
  6. Ramachandraiah, C., Kumar, J. R., Reddy, K. J., Narayana, S. L., & Reddy, A. V. (2008)., Development of a highly sensitive extractive spectrophotometric method for the determination of nickel (II) from environmental matrices using N-ethyl-3-carbazolecarboxaldehyde-3-thiosemicarba zone., Journal of environmental management, 88(4), 729-736.
  7. Sözgen, K., & Tütem, E. (2004)., Second derivative spectrophotometric method for simultaneous determination of cobalt, nickel and iron using 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol., Talanta, 62(5), 971-976.
  8. Chimpalee, N., Chimpalee, D., Keawpasert, P., & Burns, D. T. (2000)., Flow injection extraction spectrophotometric determination of nickel using bis (acetylacetone) ethylenediimine., Analytica chimica acta, 408(1-2), 123-127.
  9. Zeng, C., Xu, X., Zhou, N., & Lin, Y. (2012)., Synergistic enhancement effect of room temperature ionic liquids for cloud point extraction combined with UV-vis spectrophotometric determination nickel in environmental samples., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 94, 48-52.
  10. Kanchi, S., Sabela, M. I., Singh, P., & Bisetty, K. (2017)., Multivariate optimization of differential pulse polarographic-catalytic hydrogen wave technique for the determination of nickel (II) in real samples., Arabian Journal of Chemistry, 10, S2260-S2272.
  11. Xu, H., Zhang, W., Zhang, X., Wang, J., & Wang, J. (2013)., Simultaneous preconcentration of cobalt, nickel and copper in water samples by cloud point extraction method and their determination by flame atomic absorption spectrometry., Procedia Environmental Sciences, 18, 258-263.
  12. Sadeghi, O., Tavassoli, N., Amini, M. M., Ebrahimzadeh, H., & Daei, N. (2011)., Pyridine-functionalized mesoporous silica as an adsorbent material for the determination of nickel and lead in vegetables grown in close proximity by electrothermal atomic adsorption spectroscopy., Food Chemistry, 127(1), 364-368.
  13. Bidabadi, M. S., Dadfarnia, S., & Shabani, A. M. H. (2009)., Solidified floating organic drop microextraction (SFODME) for simultaneous separation/preconcentration and determination of cobalt and nickel by graphite furnace atomic absorption spectrometry (GFAAS)., Journal of hazardous materials, 166(1), 291-296.
  14. Zeng, C., Jia, Y., Lee, Y. I., Hou, X., & Wu, L. (2012)., Ultrasensitive determination of cobalt and nickel by atomic fluorescence spectrometry using APDC enhanced chemical vapor generation., Microchemical Journal, 104, 33-37.
  15. Thangavel, S., Dash, K., Dhavile, S. M., & Sahayam, A. C. (2015)., Determination of traces of As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si and Te in high-purity nickel using inductively coupled plasma-optical emission spectrometry (ICP-OES)., Talanta, 131, 505-509.
  16. Teixeira, L. S. G., Santos, E. S., & Nunes, L. S. (2012)., Determination of copper, iron, nickel and zinc in ethanol fuel by energy dispersive X-ray fluorescence after pre-concentration on chromatography paper., Analytica chimica acta, 722, 29-33.
  17. Zhou, Q., Xing, A., & Zhao, K. (2014)., Simultaneous determination of nickel, cobalt and mercury ions in water samples by solid phase extraction using multiwalled carbon nanotubes as adsorbent after chelating with sodium diethyldithiocarbamate prior to high performance liquid chromatography., Journal of Chromatography A, 1360, 76-81.
  18. S. Kanchi, P. Singh, K. Bisetty (2014)., Dithiocarbamates as hazardous remediation agent: a critical review on progress in environmental chemistry for inorganic species studies of 20th century., Arab. J. Chem. 7(1) 11-25.
  19. Kiatkumjorn, T., Rattanarat, P., Siangproh, W., Chailapakul, O., & Praphairaksit, N. (2014)., Glutathione and L-cysteine modified silver nanoplates-based colorimetric assay for a simple, fast, sensitive and selective determination of nickel., Talanta, 128, 215-220.
  20. Amin, A. S. (2009)., Utilization of solid phase spectrop hotometry for the determination of trace amounts of copper using 5-(2-benzothiazolylazo)-8-hydroxyquinoline., Chemical Papers, 63(6), 625.
  21. Amin, A. S., & AL-Attas, A. S. (2012)., Study of the solid phase extraction and spectrophotometric determination of nickel using 5-(4′-chlorophenylazo)-6-hydroxypyrimidine-2, 4-dione in environmental samples., Journal of Saudi Chemical Society, 16(4), 451-459.
  22. Barreto, W. J., Barreto, S. R. G., Scarminio, I. S., Ishikawa, D. N., Soares, M. D. F., & Proença, M. V. B. D. (2010)., Determination of Ni (II) in metal alloys by spectrophotometry UV-Vis using dopasemiquinone., Química Nova, 33(1), 109-113.
  23. Fan, X., Zhu, C., & Zhang, G. (1998)., Synthesis of 2-[2-(5-methylbenzothiazolyl) azo]-5-dimethylaminobenzoic acid and its application to the spectrophotometric determination of nickel., Analyst, 123(1), 109-112.
  24. Ghaedi, M. (2007)., Selective and sensitized spectrophotometric determination of trace amounts of Ni (II) ion using α-benzyl dioxime in surfactant media., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66(2), 295-301.
  25. Hu, Q., Yang, G., Huang, Z., & YIN, J. (2003)., Determination of nickel with 2-(2-quinolylazo)-5-diethylaminoaniline as a chromogenic reagent., Analytical sciences, 19(10), 1449-1452.
  26. Hu, Q., Yang, G., Huang, Z., & Yin, A. (2004)., Study on solid phase extraction and spectrophotometric determination of nickel in waters and biological samples., Bull. Kor. Chem. Soc, 25, 545-548.
  27. Kumar, B. N., Kumar, S. H., & Redhi, G. G. (2016)., Spectrophotometric Determination of Cadmium (II) in Water and Soil Samples Using Schiff, Asian journal of chemistry.
  28. Kumar, B. N., Kanchi, S., Bisetty, K., & Jyothi, N. V. V. (2014)., Analytical and biological evaluation of Schiff, International Journal of Environmental Analytical Chemistry, 1(1), 1-7.
  29. Li, Z., Pan, J., & Tang, J. (2002)., Determination of nickel in food by spectrophotometry with o-carboxyl benzenediazo-aminoazobenzene., Analytical letters, 35(1), 167-183.
  30. Macit, M., BATI, H., & Bati, B. (2000)., Synthesis of 4-benzyl-1-piperazineglyoxime and its use in the spectrophotometric determination of nickel., Turkish Journal of Chemistry, 24(1), 81-88.
  31. Sarma, L. S., Kumar, J. R., Reddy, K. J., Thriveni, T., & Reddy, A. V. (2008)., Development of highly sensitive extractive spectrophotometric determination of nickel (II) in medicinal leaves, soil, industrial effluents and standard alloy samples using pyridoxal-4-phenyl-3-thiosemicarbazone., Journal of Trace Elements in Medicine and Biology, 22(4), 285-295.
  32. Suresh, T., Kumar, S. S., Kottureshawara, N. M., Revanasidappa, M., & Khasim, S. (2008)., Spectrophotometric study of nitrogen base adducts of nickel (II)-4-methyl-8-quinolinate., Journal of Chemistry, 5(2), 404-408.
  33. Vongboot, M., & Suesoonthon, M. (2015)., Removal of copper and iron by polyurethane foam column in FIA system for the determination of nickel in pierced ring., Talanta, 131, 325-329.
  34. Omidi, F., Behbahani, M., Shahtaheri, S. J., & Salimi, S. (2015)., Trace monitoring of silver ions in food and water samples by flame atomic absorption spectrophotometry after preconcentration with solvent-assisted dispersive solid phase extraction., Environmental Monitoring and Assessment, 187(6), 361.
  35. Omidi, F., Behbahani, M., Bojdi, M. K., & Shahtaheri, S. J. (2015)., Solid phase extraction and trace monitoring of cadmium ions in environmental water and food samples based on modified magnetic nanoporous silica., Journal of Magnetism and Magnetic Materials, 395, 213-220.
  36. Behbahani, M., Bide, Y., Bagheri, S., Salarian, M., Omidi, F., & Nabid, M. R. (2016)., A pH responsive nanogel composed of magnetite, silica and poly (4-vinylpyridine) for extraction of Cd (II), Cu (II), Ni (II) and Pb (II)., Microchimica Acta, 183(1), 111-121.
  37. Bojdi, M. K., Behbahani, M., Hesam, G., & Mashhadizadeh, M. H. (2016)., Application of magnetic lamotrigine-imprinted polymer nanoparticles as an electrochemical sensor for trace determination of lamotrigine in biological samples., RSC advances, 6(38), 32374-32380.
  38. Behbahani, M., Aliakbari, A., Amini, M. M., Behbahani, A. S., & Omidi, F. (2015)., Synthesis and characterization of diphenylcarbazide-siliceous mesocellular foam and its application as a novel mesoporous sorbent for preconcentration and trace detection of copper and cadmium ions., RSC advances, 5(84), 68500-68509.
  39. Shojaee, M., Behbahani, M., & Nabid, M. R. (2015)., Application of magnetic nanoparticles modified with poly (2-amino thiophenol) as a sorbent for solid phase extraction and trace detection of lead, copper and silver ions in food matrices., RSC Advances, 5(83), 67418-67426.
  40. Shojaee, M., Behbahani, M., & Nabid, M. R. (2015)., Application of magnetic nanoparticles modified with poly (2-amino thiophenol) as a sorbent for solid phase extraction and trace detection of lead, copper and silver ions in food matrices., RSC Advances, 5(83), 67418-67426.
  41. Behbahani, M., Babapour, M., Amini, M. M., Sadeghi, O., Bagheri, A., Salarian, M., & Rafiee, B. (2013)., Separation/enrichment of copper and silver using titanium dioxide nanoparticles coated with poly-thiophene and their analysis by flame atomic absorption spectrophotometry.,
  42. Behbahani, M., Abolhasani, J., Amini, M. M., Sadeghi, O., Omidi, F., Bagheri, A., & Salarian, M. (2015)., Application of mercapto ordered carbohydrate-derived porous carbons for trace detection of cadmium and copper ions in agricultural products., Food Chemistry, 173, 1207-1212.
  43. Ebrahimzadeh, H., & Behbahani, M. (2017)., A novel lead imprinted polymer as the selective solid phase for extraction and trace detection of lead ions by flame atomic absorption spectrophotometry: synthesis, characterization and analytical application., Arabian journal of chemistry, 10, S2499-S2508.
  44. Turkoglu, O., Soylak, M., & Belenli, I. (2003)., Electrical conductivity of chloro (phenyl) glyoxime and its Co (II), Ni (II) and Cu (II) complexes., Collection of Czechoslovak chemical communications, 68(7), 1233-1242.
  45. Ravindhranath, K. (2012)., A simple method for spectrophotometric determination of traces of copper., Bapatla-522101, Guntur (AP), Vol, 5, 38-41.
  46. Shafiee, G., Taghvamanesh, A., Mohamadizadeh, A., & Ghaedi, M. (2006)., Sensitized Spectrophotometric determination of Cu (II) ion using Α-Benzoin Oxime surfactant media., Journal of Saudi Chemical Society, 9(3), 497-506.
  47. Hankare, A. S., & Barhate, V. D. (2014)., Development of extractive spectrophotometric determination of copper (II) using [N-(O-Hydroxybenzylidene)-4-methylaniline] (NOHBMA) as an analytical reagent., Int. J. Curr. Pharm. Res, 6(1), 30-33.
  48. Admasu, D., Reddy, D. N., & Mekonnen, K. N. (2016)., Spectrophotometric determination of Cu (II) in soil and vegetable samples collected from Abraha Atsbeha, Tigray, Ethiopia using heterocyclic thiosemicarbazone., Springer Plus, 5(1), 1-8.