6th International Young Scientist Congress (IYSC-2021) and workshop on Intellectual Property Rights on 8th and 9th May 2021.  10th International Science Congress (ISC-2020) will be Postponed to 8th and 9th December 2021 Due to COVID-19.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Photocatalytic, anti-microbial, antioxidant and cytotoxic activity of electrochemically synthesized ZnO-TiO2 nanostructures

Author Affiliations

  • 1Department of Chemistry, St Aloysius College (Autonomous), Mangalore-575003, India
  • 2College of Fisheries Mangalore-575003, India
  • 3St Agnes Centre for Post Graduate Studies and Research, Mangalore-575002, India
  • 4Department of Chemistry, St Aloysius College (Autonomous), Mangalore-575003, India

Res.J.chem.sci., Volume 10, Issue (2), Pages 8-20, June,18 (2020)


Mixed metal oxide nanoparticles (NPs) of ZnO-TiO2 (ZTiO) were synthesized using a simplistic two-step electrochemical-thermal route in the presence and absence of three surfactants: Cetyltrimethyl ammonium bromide (Cetrimide), Sodium dodecyl sulphate (SDS) and polyethylene glycol (PEG). This investigation intended to assess the possible applicability of these nanocomposites for degradation of 2 organic aqueous dyes-methylene Blue (MB) and Eriochrome Black-T (EBT). The potential application of ZTiO as antimicrobial agents was also investigated using disc diffusion technique against the Gram-negative bacteria, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae and the Gram-positive Staphylococcus aureus. Antioxidant property of the NPs was established by DPPH radical scavenging technique. The particles show a considerably high bacteriostatic effect towards all the pathogens tested. ZTiO also showed significant cytotoxicity to HeLa breast cancer cells. This proves that the electrochemical synthetic route with its low cost and high efficiency is a competent technique for the large-scale synthesis of heterometal oxide photocatalysts which could potentially be used as effective therapeutic agents.


  1. Royston, E., Ghosh, A., Kofinas, P., Harris, M.T. and Culver, J.N. (2008)., Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes., Langmuir, 24(3), 906-912.
  2. Zheng, Y., Zheng, L., Zhan, Y., Lin, X., Zheng, Q. and Wei, K. (2007)., Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis., Inorg. Chem., 46(17), 6980-6986.
  3. Colón, G., Hidalgo, M., Navío, J.A., Melián, E.P., Díaz, O.G. and Dona, J. (2008)., Influence of amine template on the photoactivity of TiO2 nanoparticles obtained by hydrothermal treatment., Appl. Catal. B: Environmental, 78(1-2), 176-182.
  4. Kim, H.G., Borse, P.H., Choi, W. and Lee, J.S. (2005)., Photocatalytic nanodiodes for visible light photocatalysis, Angew., Chem. Int. Ed., 44(29), 4585-4589.
  5. Marci, G., Augugliaro, V., Lopez-Munoz, M. J., Martin, C., Palmisano, L., Rives, V., ... & Venezia, A. M. (2001)., Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 2. surface, bulk characterization, and 4-nitrophenol photodegradation in liquid− solid regime., The Journal of Physical Chemistry B, 105(5), 1033-1040.
  6. An, T.-Q., Peng, J.-M., Tian, Z.-J., Zhao, H.-Y., Li, N., Liu, Y.-M., Chen, J.-Z., Leng, C.-L., Sun, Y. and Chang, D. (2013)., Pseudorabies virus variant in bartha-k61-vaccinated pigs, china, 2012., Emerging Infect. Dis., 19(11),1749.
  7. Carp, O., Huisman, C.L. and Reller, A. (2004)., Photoinduced reactivity of titanium dioxide., Prog. Solid State Chem., 32(1-2), 33-177.
  8. Losito, I., Amorisco, A., Palmisano, F. and Zambonin, P. (2005)., X-ray photoelectron spectroscopy characterization of composite TiO2-poly (vinylidenefluoride) films synthesised for applications in pesticide photocatalytic degradation., Appl. Surf. Sci., 240(1-4),180-188.
  9. Akpan, U. and Hameed, B. (2011)., Photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid by Ca-Ce-W-TiO2 composite photocatalyst., Chem. Eng. J., 173(2), 369-375.
  10. Naimi-Joubani, M., Shirzad-Siboni, M., Yang, J.-K., Gholami, M. and Farzadkia, M. (2015)., Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO2 composite., J. Ind. Eng. Chem., 22, 317-323.
  11. Tom, R.T., Suryanarayanan, V., Reddy, P.G., Baskaran, S. and Pradeep, T. (2004)., Ciprofloxacin-protected gold nanoparticles., Langmuir, 20(5),1909-1914.
  12. Concannon, S.P., Crowe, T., Abercrombie, J., Molina, C., Hou, P., Sukumaran, D., Raj, P. and Leung, K.-P. (2003)., Susceptibility of oral bacteria to an antimicrobial decapeptide., J. Med. Microbiol.,52,1083-1093.
  13. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H. and Mohamad, D. (2015)., Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism., Nano-Micro Lett., 7(3), 219-242.
  14. Shalaby, A., Dimitriev, Y., Iordanova, R., Bachvarova-Nedelcheva, A. and Iliev, T. (2011)., Modified sol-gel synthesis of submicron powders in the system ZnO-TiO2., Journal of the University of Chemical Technology and Metallurgy, 46(2),137-142.
  15. Mandal, G. and Ganguly, T. (2011)., Applications of nanomaterials in the different fields of photosciences., Indian J. phys., 85(8),1229.
  16. Reddy, V.R., Manjunath, V., Janardhanam, V., Kil, Y.-H. and Choi, C.-J. (2014)., Electrical properties and current transport mechanisms of the Au/n-GaN Schottky structure with solution-processed high-k BaTiO3 interlayer., J. Electron. Mater., 43(9), 3499-3507.
  17. Chandrappa, K.G., Venkatesha, T.V., Vathsala, K. and Shivakumara, C. (2010)., A hybrid electrochemical-thermal method for the preparation of large ZnO nanoparticles., Sci. Technol., 12(7), 2667-2678.
  18. Li, Y., Li, X., Li, J. and Yin, J. (2006)., Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study., Water Res., 40(6), 1119-1126.
  19. Brand-Williams, W., Cuvelier, M.-E. and Berset, C. (1995)., Use of a free radical method to evaluate antioxidant activity., LWT-Food Sci. Technol., 28(1), 25-30.
  20. Poojary, M.M. and Passamonti, P. (2015)., Optimization of extraction of high purity all-trans-lycopene from tomato pulp waste., Food Chem., 188, 84-91.
  21. Pathan, A.H., Ramesh, A.K., Bakale, R.P., Naik, G.N., Kumar, H.R., Frampton, C.S., Rao, G.M.A. and Gudasi, K.B. (2015)., Association of late transition metal complexes with ethyl 2-(2-(4-chlorophenylcarbamothioyl) hydrazono) propanoate: Design, synthesis and in vitro anticancer studies., Inorganica Chimica Acta, 430, 216-224.
  22. Hossain, M., Samad, M., Khan, M.D., Ara, N. and Islam, T. (2018)., Study of ZnO-TiO2 Composite Photocatalyst Mediated Photodegradation of Eosin Yellow., IOSR J. Environ. Sci., Toxicol. Food Technol., 12, 58-67.
  23. Thamaphat, K., Limsuwan, P. and Ngotawornchai, B. (2008)., Phase characterization of TiO2 powder by XRD and TEM., Kasetsart J.(Nat. Sci.), 42(5), 357-361.
  24. Ayed, S., Belgacem, R.B., Zayani, J.O. and Matoussi, A. (2016)., Structural and optical properties of ZnO/TiO2 composites., Superlattices Microstruct., 91,118-128.
  25. Hussein, A.M., Iefanova, A.V., Koodali, R.T., Logue, B.A. and Shende, R.V. (2018)., Interconnected ZrO2 doped ZnO/TiO2 network photoanode for dye-sensitized solar cells., Energy Rep., 4, 56-64.
  26. Khan, M., Naqvi, A.H. and Ahmad, M. (2015)., Comparative study of the cytotoxic and genotoxic potentials of zinc oxide and titanium dioxide nanoparticles., Toxicol. Rep., 2, 765-774.
  27. Ullah, H., Khan, K.A. and Khan, W.U. (2014)., ZnO/TiO2 nanocomposite synthesized by sol gel from highly soluble single source molecular precursor., Chin. J. Chem. l Phy., 27, 548-554.
  28. Soni, B., Deshpande, M., Bhatt, S., Garg, N. and Chaki, S. (2013)., Studies on ZnO nanorods synthesized by hydrothermal method and their characterization., J. Nano-Electron. Phys., 5,4(2), 04077-6.
  29. Moradi, S., Aberoomand Azar, P., Raeis Farshid, S., Abedini Khorrami, S. and Givianrad, M.H. (2012)., Effect of Additives on Characterization and Photocatalytic Activity of TiO2/ZnO Nanocomposite Prepared via Sol-Gel Process., Int. J. Chem. Eng., 1-5.
  30. Stoyanova, A., Hitkova, H., Bachvarova-Nedelcheva, A., Iordanova, R., Ivanova, N. and Sredkova, M. (2013)., Synthesis and antibacterial activity of TiO2/ZnO nanocomposites prepared via nonhydrolytic route., J. Chem. Technol. Metall., 48(2), 154-161.
  31. Yin, R., Luo, Q., Wang, D., Sun, H., Li, Y., Li, X. and An, J. (2014)., SnO2/gC3N4 photocatalyst with enhanced visible-light photocatalytic activity., J. Mater. Sci., 49(17), 6067-6073.
  32. Adhikari, S., Sarkar, D. and Madras, G. (2015)., Highly efficient WO3-ZnO mixed oxides for photocatalysis., RSC Adv., 5(16), 11895-11904.
  33. Gholami, M., Shirzad-Siboni, M., Farzadkia, M. and Yang, J.-K. (2016)., Synthesis, characterization, and application of ZnO/TiO2 nanocomposite for photocatalysis of a herbicide (Bentazon)., Desalin. Water Treat., 57(29), 13632-13644.
  34. Stoimenov, P.K., Klinger, R.L., Marchin, G.L. and Klabunde, K.J. (2002)., Metal oxide nanoparticles as bactericidal agents., Langmuir, 18(17), 6679-6686.
  35. Yang, H., Liu, C., Yang, D., Zhang, H. and Xi, Z. (2009)., Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition., J. Appl. Toxicol., 29(1), 69-78.
  36. Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M.F. and Fiévet, F. (2006)., Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium., Nano lett., 6(4), 866-870.
  37. Clapp, A.R., Medintz, I.L., Mauro, J.M., Fisher, B.R., Bawendi, M.G. and Mattoussi, H. (2004)., Fluorescence Resonance Energy Transfer Between Quantum Dot Donors and Dye-Labeled Protein Acceptors., J. Am. Chem. Soc., 126(1), 301-310.
  38. Premanathan, M., Karthikeyan, K., Jeyasubramanian, K. and Manivannan, G. (2011)., Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation., Nanomed-Nanotechnol., 7(2), 184-192.
  39. Kim, I.-S., Baek, M. and Choi, S.-J. (2010)., Comparative Cytotoxicity of Al2O3, CeO2, TiO2 and ZnO Nanoparticles to Human Lung Cells., J. Nanosci. Nanotechnol., 10(5), 3453-3458.
  40. Gies, V. and Zou, S. (2018)., Systematic toxicity investigation of graphene oxide: evaluation of assay selection, cell type, exposure period and flake size., Toxicol. Res., 7(1), 93-101.
  41. Das, D., Nath, B. C., Phukon, P., & Dolui, S. K. (2013)., Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity., Colloids and Surfaces B: Biointerfaces, 111, 556-560.
  42. Singh, B.N., Rawat, A.K.S., Khan, W., Naqvi, A.H. and Singh, B.R. (2014)., Biosynthesis of stable antioxidant ZnO nanoparticles by Pseudomonas aeruginosa rhamnolipids., PLoS One, 9(9), e106937.
  43. Ho, D.D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M. and Markowitz, M. (1995)., Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection., Nature, 373(6510),123-126.
  44. Singh, N. and Rajini, P. (2004)., Free radical scavenging activity of an aqueous extract of potato peel., Food Chem., 85(4), 611-616.