Research Journal of Chemical Sciences ______________________________________________ ISSN 2231-606X Vol. 1(9), 6-10, Dec. (2011) Res.J.Chem.Sci. International Science Congress Association 6 Computational Molecular Nanoscience: A Study of the Molecular Structure and Properties of a RAFT Polymerization Agent Glossman-Mitnik D.NANOCOSMOS Virtual Lab - Centro de Investigación en Materiales Avanzados, S.C., M. de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Chih. 31109, MEXICO Available online at: www.isca.in (Received 13th July 2011, revised 01st August 2011, accepted-08th August 2011)Abstract In this work, we make use of a model chemistry within Density Functional Theory (DFT) recently presented, which is called M05-2X, to calculate the molecular structure of dibenzyl trithiocarbonate (DBTTC), as well to predict its infrared (IR) and ultraviolet (UV-Vis) spectra, the dipole moment and electrical polarizability and static first hyperpolarizability. Keywords: Molecular structure, infrared spectrum, ultraviolet spectrum, dipole moment, polarizability, RAFT polymerization agent. Introduction RAFT polymerization has recently emerged as a promising controlled radical polymerization due to its operation simplicity and the resultant polymers free from the contamination of metal catalyst . The objective of this work is to report the results of the calculation of the molecular structure and properties of one of the most common RAFT polymerization agents, dibenzyl trithiocarbonate (DBTTC)2 using a recently developed density functional . Material and MethodsFor what concerns the calculation of the gas phase terms, we have chosen the hybrid meta-GGA M05-2X functional, which consistently provides satisfactory results for several structural and thermodynamic properties. The presence of anionic species makes the use of diffusion functions mandatory4 and for the sake of consistence, we have used the same basis set for all the computations. As a consequence we selected the G-31+G(d,p) basis set for geometry optimizations and evaluations of harmonic frequencies both in the gas phase and in aqueous solution. Solvation energies were computed by the Integral Equation Formalism- Polarizable Continuum Model (IEF-PCM), including the UAHF model. All the calculations have been performed with the Gaussian 09W series of programs. Results and DiscussionA representation of the molecular structure of DBTTC is displayed in figure 1, together with the values of the interatomic bond lengths and angles in tables 1 and 2. The results agree well with those obtained in an experimental way through X-ray diffraction. Table-1 Interatomic Bond Lengths (in Å) for Dibenzyl Trithiocarbonate (DBTTC) R(1-2) 1.638 R(1-3) 1.753 R(1-4) 1.746 R(3 - 5) 1.823 R(4-8) 1.823 R(5-6) 1.094 R(5-7) 1.091 R(5-11) 1.518 R(8 - 9) 1.092 R(8-10) 1.089 R(8 - 22) 1.511 R(11-12) 1.394 R(11-13) 1.395 R(12 - 14) 1.392 R(12-15) 1.080 R(13 - 16) 1.391 R(13-17) 1.081 R(14-18) 1.393 R(14 - 19) 1.079 R(16-18) 1.393 R(16 - 20) 1.079 R(18-21) 1.079 R(22-23) 1.397 R(22-24) 1.394 R(23-25) 1.390 R(23 - 26) 1.081 R(24-27) 1.394 R(24-28) 1.079 R(25-29) 1.395 R(25-30) 1.079 R(27 - 29) 1.391 R(27-31) 1.079 R(29-32) 1.079 Research Journal of Chemical Sciences __________________________________________________________ ISSN 2231-606X Vol. 1(9), 6-10, Dec. (2011) Res.J.Chem.SciInternational Science Congress Association 7 Figure-1 Molecular Structure of Dibenzyl Trithiocarbonate (DBTTC) Figure-2 Vibrational Spectrum of Dibenzyl Trthiocarbonate (DBTTC) Vibrational spectrum Frequency, cm**-13 0002 5002 0001 5001 000 500 0 IR intensity 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 196 370 495 611 754 867 1 102 1 318 1 543 3 268 Research Journal of Chemical Sciences __________________________________________________________ ISSN 2231-606X Vol. 1(9), 6-10, Dec. (2011) Res.J.Chem.SciInternational Science Congress Association 8 Figure-3 Absorption Spectrum of Dibenzyl Trithiocarbonate (DBTTC) Figure-4 Emission Spectrum of Dibenzyl Trithiocarbonate (DBTTC) Absorption spectrum Wavelength, nm 360 355 350 345 340 335 330 325 320 315 310 305 300 295 290 285 280 275 270 265 260 255 250 245 240 235 230 225 220 215 210 205 200 Absorption 0.14 0.12 0.1 0.08 0.06 0.04 0.02 261 288 Emission spectrum Wavelength, nm 500 495 490 485 480 475 470 465 460 455 450 445 440 435 430 425 420 415 410 405 400 Emission 0.01 0.01 0.01 0.00 0.00 0 435 448 Research Journal of Chemical Sciences __________________________________________________________ ISSN 2231-606X Vol. 1(9), 6-10, Dec. (2011) Res.J.Chem.SciInternational Science Congress Association 9 Table-2 Interatomic Bond Angles (in degrees) for Dibenzy l Trithiocarbonate (DBTTC) A(2-1-3) 117.0 A(2-1-4) 126.7 A(3-1-4) 116.2 A(1-3-5) 105.2 A(1-4-8) 101.7 A(3-5-6) 103.2 A(3-5-7) 109.5 A(3-5-11) 115.7 A(4-8-9) 104.2 A(4-8-10) 108.5 A(4-8-22) 112.6 A(6-5-7) 107.8 A(6-5-11) 109.7 A(7-5-11) 110.5 A(5-11-12) 121.6 A(5-11-13) 118.9 A(9-8-10) 109.2 A(9-8-22) 110.7 A(10-8-22) 111.4 A(8-22-24) 120.6 A(12-11-13) 119.4 A(11-12-14) 120.2 A(11-12-15) 119.5 A(11-13-16) 120.4 A(11-13-17) 119.5 A(14-12-15) 120.4 A(12-14-18) 120.3 A(12-14-19) 119.7 A(16-13-17) 120.1 A(13-16-18) 120.0 A(13-16-20) 119.9 A(18-14-19) 120.0 A(14-18-16) 119.7 A(14-18-21) 120.1 A(18-16-20) 120.1 A(16-18-21) 120.2 The calculation of the absorption spectrum (UV-Vis) of DBTTC has been performed by solving the time dependent Kohn-Sham equations according to the method implemented in Gaussian 09W 7-10 . The equations have been solved for 10 excited states. The geometry of the first excited state has been optimized by resorting to a HF-CIS/3-21G* calculation. The emission spectrum was thus obtained by solving again the TD-DFT equations at the same level of theory as for the absorption spectrum. The infrared spectrum is displayed in figure 2 and shows the same peaks of the experimental determination, with a scaling factor of 0.985, which is considered acceptable for this kind of calculations. Table-3 Dipole Moment (in Debye), Polarizability (Bohr) and Static First Hyperpolarizability (in a.u.) for Dibenzyl Trithiocarbonate (DBTTC) Dipole moment (field-independent basis, Debye): X= -0.5070 Y= -0.4352 Z= -0.6259 Tot= 0.9155 Isotropic polarizability= 87.60 Bohr**3 Static Hyperpolarizability K= 1 block 1 -.0.100102D+03 K= 2 block 1 2 0.108641D+03 -0.801621D+02 0.202126D+03 K= 3 block 1 2 3 0.133385D+03 -0.518882D+02 0.854917D+02 0.232082D+02 0.667596D+02 0.254381 The absorption and emission spectra of DBTTC are presented in figures 3 and 4, showing two absorption peaks at 261 and 288 nm, while there is some fluorescence because there are two emission peaks at 435 and 448 nm. The values of the dipole moment, polarizability and static first hyperpolarizability for the DBTTC molecule have been obtained after performing a POLAR calculation as implemented in the Gaussian 03W program. The results of the calculation of the Mulliken atomic charges, as well as the HOMO and the LUMO of the DBTTC molecule can be useful as a guide of the reactivity of DBTTC within the RAFT polymerization process. The dipole moment, polarizability and static first hyperpolarizability for DBTTC are presented in table 3. ConclusionsThese results show that the present model could be useful for the evaluation of reliable molecular structure and properties values for systems of interest in materials science frameworks that could be relevant for polymerization applications. Research Journal of Chemical Sciences __________________________________________________________ ISSN 2231-606X Vol. 1(9), 6-10, Dec. (2011) Res.J.Chem.SciInternational Science Congress Association 10 AcknowledgementsThis work has been partially supported by Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico). D.G.M. is a researcher of CONACYT and CIMAV. References 1.Han D., Yang, L., Zhang X., and Pan C., Synthesis and Characterization of Polystyrene--Tetraaniline Stars from Polystyrene Stars with Surface Reactive Groups prepared by RAFT Polymerization, European Polymer Journal(43), 3873-3881 (2007) 2.Han D., and Pan C., A Novel Strategy for Synthesis of Amphiphilic -shaped Copolymers by RAFT Polymerization, European Polymer Journal(42), 507-515 (2006) 3.Zhao Y. and Truhlar D.G., Density Functionals with Broad Applicability in Chemistry, Acc. Chem. Res. and references therein, (41), 157-167 (2008) 4.Lynch B-J., Zhao Y. and Truhlar D.G., Effectiveness of Diffuse Basis Functions for Calculating Relative Energies by Density Functional Theory, J. Phys. Chem A.,(107), 1384-1388 (2003) 5.Tomasi J., Mennucci B. and Cancès, E., The IEF Version of the PCM Solvation Method: An Overview of a New Method Addressed to Study Molecular Solutes at the QM ab initio Level, J. Mol. Struct., Theochem,(464), 211 (1999) 6.Gaussian, Revision A1, Frisch M.J., Trucks, G.W., Schlegel, H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li, X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., HondaY., Kitao O., Nakai H., Vreven T., Montgomery Jr., J. A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam N.J., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Gaussian Inc., Wallingford CT, (2009)7.Lewars E., Computational Chemistry - Introduction to the Theory and Applications of Molecular and Quantum Mechanics, Kluwer Academic Publishers, (2003)8.Ruiz-Anchondo T. and Glossman-Mitnik D., Computational Molecular Characterization of the - Carotene Molecule, Journal of Molecular StructureTheochem,(913), 215-220 (2009)9.Ruiz-Anchondo T., Flores-Holguín and Glossman-Mitnik D., Natural Carotenoids as Precursors of Nanomaterials for Molecular Photovoltaics: A Computational DFT Study, Molecules,(15), 4490-4510 (2010)10.Flores-Holguín N., Rodríguez-Valdez L.M. and Glossman-Mitnik D., Computational Study of 3, 4-Diphenyl-4-(4-Metoxyphenyl)1,2,5-Thiadiazoline 1,1-Dioxide for Molecular Photovoltaics, Journal of Computational and Theoretical Nanoscience,8(1), 74-79 (2011)