5th International Virtual Conference (IVC-2018).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Electron-impurity scattering rate in double layer graphene system at low and high temperature

Author Affiliations

  • 1Physics Department, MUIS, Ganpat University, Mehsana, India
  • 2Physics Department, MUIS, Ganpat University, Mehsana, India
  • 3Physics Department, MUIS, Ganpat University, Mehsana, India
  • 4Vishwakarma Govt. Engg. College, Chandkheda, Ahmedabad, India

Res. J. Physical Sci., Volume 5, Issue (6), Pages 6-10, August,4 (2017)


Electron-impurity scattering rate (&


  1. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V. and Firsov A.A. (2004)., Electric Field Effect in Atomically Thin Carbon Films., Science, 306, 666-669.
  2. Hwang E.H., Adam S. and Sarma S.D. (2007)., Carrier Transport in Two-Dimensional Graphene Layers., Phys. Rev. Lett., 98, 186806.
  3. Noro M., Koshino M. and Ando T. (2010)., Theory of Transport in Graphene with Long-Range Scatterers., J. Phys. Soc. Jpn, 79, 094713.
  4. Zhu W. and Lv B. (2013)., Uncovering the Dominant Scattering Mechanism in Graphene System., Physics Letters A, 377(25-27), 1649-1654.
  5. Ohta T., Bostwick A., Seyller T., Horn K. and Rotenberg E. (2006)., Controlling the Electronic Structure of Bilayer Graphene., Science, 313, 951-954.
  6. Schmidt H., Ludtke T., Barthold P., McCann E., Falko V.I. and Haug R.J. (2008)., Tunable Graphene System with Two Decoupled Monolayers., Appl. Phys. Lett, 93, 172108.
  7. Kim S., Jo I., Nah J., Yao Z., Banerjee S.K. and Tutuc E. (2011)., Coulomb Drag of Massless Fermions in Graphene., Phys. Rev. B, 83, 161401.
  8. Ponomarenko L.A., Geim A.K., Zhukov A.A., Jalil R., Morozov S.V., Novoselov K.S., Grigorieva I.V., Hill E.H., Cheianov V.V., Fal’ko V.I., Watanabe K., Taniguchi T. and Gorbachev R.V. (2011)., Tunable Metal–insulator Transition in Double-layer Graphene Heterostructures., Nature Phys, 7, 958.
  9. Koshino M. (2009)., Electronic Transport in Bilayer Graphene., New Journal of Physics, 11, 095010.
  10. MacDonald A.H., Jung J. and Zhang F. (2012)., Pseudospin Order in Monolayer, Bilayer and Double-layer graphene., Physica Scripta, T146, 014012.
  11. Ponomarenko L.A., Yang R., Mohiuddin T.M., Katsnelson M.I., Novoselov K.S., Morozov S.V., Zhukov A.A., Schedin F., Hill E.W. and Geim A.K. (2009)., Effect of a High-ϰ Environment on Charge Carrier Mobility in Graphene., Phys. Rev. Lett, 102, 206603.
  12. Kechedzhi K., Hwang E.H. and Sarma S.D. (2012)., Gate-tunable Quantum Transport in Double-Layer Graphene., Phys. Rev. B, 86, 165442.
  13. Hosono K. and Wakabayashi K. (2013)., Dielectric Environment Effect on Carrier Mobility of Graphene Double-layer Structure., Appl. Phys. Lett, 103, 033102.
  14. Hosono K. and Wakabayashi K. (2014)., Theory of Carrier Transport in Graphene Double-layer Structure with Carrier Imbalance., Jpn. J. Appl. Phys, 53, 06JD07.
  15. Hwang E.H. and Sarma S.D. (2009)., Screening Induced Temperature Dependent Transport in Two Dimensional Graphene., Phys. Rev. B, 79, 165404.