Amperometric detection of cholesterol by nanocomposite graphite paste electrode

Author Affiliations

  • 1Department of Physics Research Center, Ahmednagar College Ahmednagar, MS, India
  • 2Department of Physics Research Center, Ahmednagar College Ahmednagar, MS, India
  • 3Department of Physics Research Center, Ahmednagar College Ahmednagar, MS, India
  • 4Department of Physics Research Center, Ahmednagar College Ahmednagar, MS, India
  • 5Institute of Technology, Kuran, Pune, MS, India
  • 6Department of Physics Research Center, Ahmednagar College Ahmednagar, MS, India
  • 7Department of Physics, Shri Anand College, Pathardi, MS, India

Res. J. Physical Sci., Volume 5, Issue (6), Pages 1-5, August,4 (2017)

Abstract

A novel electrochemical cholesterol biosensor based on graphite (Gr) paste electrode modified with polyaniline (PANI) and has been developed for selective and quantitative recognition of cholesterol by immobilizing enzyme cholesterol oxidase (ChO) for monitoring the potentiometric response. Cholesterol oxidase immobilization on electrode was investigated using a amperometric method, and factors affecting its immobilization such as potential, pH was discussed in detail. The amperometric of the developed cholesterol biosensor was evaluated, and the obtained cholesterol biosensor exhibited shorter response time (3 s), wider range 0.1-10 µM and the detection limit were found to be 1x10-9M. Enzyme activity is 85% retained for 60 days.

References

  1. Songa E.A. and Okonkwo J.O., Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorous pesticides: A review., Talanta, 155, 289-304.
  2. Stoytcheva M. and Zlatev R. (2011)., Organophosphorus pesticides analysis., a Stoytcheva (Ed.), Pesticides in the Modern World - Trends in Pesticides Analysis ,InTech, Croatia, 143-164.
  3. Stoytcheva Margarita, Gochev Velizar and Velkova Zdravka (2016)., Electrochemical biosensors for direct determination of organophosphorous pesticides: a review., Curr. Anal. Chem., 12, 37-42.
  4. Sassolas Audrey, Prieto-Simón Beatriz and Marty Jean-Louis (2012)., Biosensors for pesticide detection: new trends., American Journal of Analytical Chemistry, 3, 210-232.
  5. Cagnini Andrea, Palchetti Ilaria, Lionti Ilaria, Mascini Marco and Turner Anthony P.F. (1995)., Disposable ruthenized screen-printed biosensors for pesticides monitoring., Sensor Actuat. B-Chem., 24, 85-89.
  6. Solna R., Sapelnikova S., Skladal P., Winther-Nielsen M., Carlsson C., Emmenus J. and Ruzgas T. (2005)., Multienzyme electrochemical array sensor for determination of phenols and pesticides., Talanta, 65(2), 349-357.
  7. Ju H. and Kandlimalla V.B. (2008)., Biosensors for Pesticides in Electrochemical Sensors, Biosensors and their biomedical applications., Academic Press. Inc., 31-56.
  8. Wu H.Z., Lee Y.C., Lin T.K., Shih H.C., Chang F.L., Lin H.P.P. (2009)., Development of an potentiometric micro-biodetector for pesticide monitoring and detection., J. Taiwan Inst. Chem. Eng., 40(2), 113-122.
  9. Parham H. and Rahbar N. (2010)., Square wave voltammetric determination of methyl parathion using ZrO2-nanoparticles modified carbon paste electrode., J. Hazard. Mater, 177, 1077-1084.
  10. Shulga O. and Kirchhoff J. (2007)., An acetylcholinesterase enzyme electrode stabilized by an electrodeposited gold nanoparticle layer., Electrochem. Commun., 9(5), 935-940.
  11. Zhang L., Zhang A., Du D., Lin Y. (2012)., Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides., Nanoscale, 4, 4674-4679.
  12. Gerard M., Chaubey A. and Malhotra B.D. (2002)., Application of conducting polymers to biosensors., Biosens. Bioelectron., 17, 345-359.
  13. Kamyabi M.A., Hajari N., Turner A.P.F. and Tiwari A. (2013)., A high-performance paraxon biosensor using covalently immobilized paraxon oxidase on a poly(2,6-diaminopyridine)/carbon nanotube electrode., Talanta, 116, 801-808.
  14. Aguilar R., Dávila M.M., Elizalde M.P., Mattusch M. and Wennrich R. (2004)., Capability of a carbon-polyvinylchloride composite electrode for the detection of dopamine, ascorbic acid and uric acid., Electrochim. Acta, 49, 851-859.
  15. Cano M., Ávila J.L., Mayén M., Mena M.L., Pingarrón J. and Rodrígez-Amaro R. (2008)., A new, third generation, PVC/TTF–TCNQ composite amperometric biosensor for glucose determination., J. Electroanal. Chem., 615, 69-74.
  16. Guzman-Vázquez de Prada A., Peña N., Parrado C., Reviejo A.J. and Pingarrón J.M. (2004)., Amperometric multidetection with composite enzyme electrodes., Talanta, 62, 896-903.
  17. Barsan Madalina M. and Brett Christopher M.A. (2009)., A new modified conducting carbon composite electrode as sensor for ascorbate and biosensor for glucose., Bioelectrochemistry, 76, 135-140.
  18. Ghica M.E. and Brett C.M.A. (2006)., Development of novel glucose and pyruvate biosensors at poly (neutral red) modified carbon film electrodes. Application to natural samples., Electroanalysis, 18(8), 748-756.
  19. Wang X., Watanabe H. and Uchiyama S. (2008)., Amperometric l-ascorbic acid biosensors equipped with enzyme micelle membrane., Talanta, 74(5), 1681-1685.
  20. Bandgar D. K. , Khuspe G.D., Pawar R.C., Lee C.S. and Patil V.B. (2014)., Facile and novel route for preparation of nanostructured polyaniline (PANi) thin films., Applied Nanoscience, 4(1), 27-36.
  21. Shukla S.K., Bharadvaj Anand, Tiwari Ashutosh, Parashar G.K., Dubey G.C. (2010)., Synthesis and characterization of highly crystalline polyanilineelectrode promising for humid sensor., Adv. Mat. Letts., 1(2), 129-134.
  22. Kumar Rajesh, Chauhan R.P., Kumar R. and Chakarvarti S.K. (2010)., Synthesis of conducting polymers and their characterization., Indian Journal of Pure & Applied Physics, 48, 524-526.
  23. Vivekanandan J., Ponnusamy V., Mahudeswaran A. and Vijayanand P.S. (2011)., Synthesis, characterization and conductivity study of polyaniline prepared by chemical oxidative and electrochemical methods., Archives of Applied Science Research, 3(6), 147-153.
  24. Tiwari A. and Singh V. (2007)., Synthesis and characterization of electrical conductingchitosan-graft-polyaniline., EXPRESS Polymer Letters, 1(5), 308-317.
  25. Prasad Bhim Bali, Kumar Deepak, Madhuri Rashmi and Tiwari Mahavir Prasad (2011)., Ascorbic acid imprinted polymer-modified graphite electrode: A diagnostic sensor for hypovitaminosis C at ultratrace ascorbic acid level., Sensors and Actuators B., 160, 418-427.
  26. Alegret S., Céspedes F., Martínez-Fàbregas E., Martorell D. and Morales A. (2011)., Carbon-polymer biocomposites for amperometric sensing., Biosens. Bioelectron., 11(1-2), 35-44.
  27. Ramesan M.T. (2014)., Synthesis, characterization, and properties of new conducting polyaniline/copper sulfide nanocomposites., Polymer Engineering & Science, 54(2), 438-445.
  28. Ahmed Shakeel, Parveen Ameena, Dashpande Raghunandan and Roy Aashis (2013)., Synthesis, characterization, and DC conductivity of polyaniline-lead oxide composites., Chemical Papers, 67(3), 350-356.
  29. Kotal Moumita , Thakur Awalendra K. and Bhowmick Anil K. (2013)., Polyaniline–Carbon Nanofiber Composite by a Chemical Grafting Approach and Its Supercapacitor Application., ACS Appl. Mater. Interfaces, 5 (17), (2013) 8374–8386.
  30. Du D., Huang X., Cai J. and Zhang A. (2007)., Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor., Biosens. Bioelectron., 23(4), 285-289.
  31. Heras J.Y., Giacobone A.F.F. and Battaglini F. (2007)., Ascorbateamperometric determination using conducting copolymers from aniline and N-(3-propane sulfonic acid) aniline., Talanta, 71(4), 1684-1689.
  32. Fabiano S., Tran-Minch C., Piro B., Dang L.A., Pharm M.C. and Vittori O. (2002)., Poly 3,4-ethylenedioxythiophene as an entrapment support for amperometric enzyme sensor., Mat. Sci. Eng., 21(1-2), 61-67.
  33. Bright H.J. and Appleby M. (1969)., The pH dependence of the individual steps in the glucose oxidase reaction, Journal of Biological Chemistry, 244(13), 3625-3634.
  34. Weibel H.K. and Bright H.J. (1971)., The pH dependence of individual step in the Glucose Oxidase reaction., J. Biol. Chem, 246, 2734.