4th International Virtual Congress (IVC-2017).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

On the characteristic and moment generating functions of type-2 (Fréchet) and type-3 (reversed Weibull) distributions

Author Affiliations

  • 1Centre for Marine Technology and Ocean Engineering (Centec), Instituto Superior Técnico, Universidade de Lisboa, Av.Rovisco Pais, 1049-001, Lisbon, Portugal
  • 2Centre for Marine Technology and Ocean Engineering (Centec), Instituto Superior Técnico, Universidade de Lisboa, Av.Rovisco Pais, 1049-001, Lisbon, Portugal

Res. J. Mathematical & Statistical Sci., Volume 5, Issue (4), Pages 12-14, April,12 (2017)

Abstract

We are able to derive for the first time the simplest forms of characteristic functions (CHFs) and moment generating functions (MGF)of type-2(Fréchet)and type-3 (reversed Weibull)in explicit closed forms by direct and unique methodology. CHF and MGF have wide applications in statistical theories such as in inversion and convolution.

References

  1. Jenkinson A.F. (1955)., The Frequency Distribution of the Annual Maximum (or Minimum) Values of Meteorological Elements., Quart. J. Roy. Met. Soc., 81(348), 158-171.
  2. Jenkinson A.F. (1969)., Estimation of Maximum Floods., World Meteorological Organization, Technical Note, 98, 183-257.
  3. Natural Environment Research Council (1975)., Flood Studies Report., 1, London.
  4. Sinclair C.D. and Ahmad M.I. (1988)., Location-Invariant Plotting Positions for PWM Estimation of the parameters of GEV Distribution., J.Hydro., 99(3-4), 271-279.
  5. Otten A. and Van Monfort M.A.J. (1980)., Maximum-Likelihood Estimation of the generalised-extreme value distribution parameters., J. Hydro., 47(1), 187-192.
  6. Prescott P. and Walden A.T. (1980)., Maximum Likelihood Estimation of the parameters of the Generalised Extreme-Value Distribution., Biometrika, 67, 723-724.
  7. Prescott P. and Walden A.T. (1983)., Maximum Likelihood Estimation of the parameters of the three parameter Generalised Extreme-Value Distribution from Censored Samples., J. Stat. Comp. Simul., 16(3-4), 241-250.
  8. Hosking J.R.M., Wallis J.R. and Wood E.F. (1985)., Estimation of the Generalised Extreme Value Distribution by the Method of Probability-Weighted Moments., Technometrics, 27(3), 251-261.
  9. Nadarajah S. and Pogány T.K. (2013)., On the Characteristic Functions for Extreme Value Distributions., Extremes, 16, 27-38.
  10. Muraleedharan G., Guedes C. and Lucas C. (2011)., Characteristic and Moment Generating Functions of Generalised Extreme Value Distribution (GEV). Sea Level Rise, Coastal Engineering, Shorelines and Tides., Chapter-14, Nova Science Publishers, New York, 269-276. (ISBN: 978-1-61728-655-1)
  11. Maurice George Kendall (1946)., The Advanced Theory of Statistics., Distribution Theory, 1, Charles Griffin and Co. Ltd., London, 433.
  12. Ochi Michel K. (1998)., Ocean Waves: Ocean Technology Series-6, Cambridge University Press., Cambridge, 319.