9th International Science Congress (ISC-2019).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

MYT decomposition and its invariant attribute

Author Affiliations

  • 1Department of Statistics, Kano University of Science and Technology, Wudil, Kano State, Nigeria
  • 2Department of Statistics, Kano University of Science and Technology, Wudil, Kano State, Nigeria

Res. J. Mathematical & Statistical Sci., Volume 5, Issue (2), Pages 14-22, February,12 (2017)

Abstract

One of the most popular scheme in monitoring multivariate statistical process control (MSPC) is the Hotelling’s &

References

  1. Hotelling H. (1947)., Multivariate Quality Control., In C. Eisenhart, M.W. Hastay and W.A. Wallis, eds. Techniques of Statistical Analysis. New York: McGraw Hill, 111-184.
  2. Sullivan J.H. and Woodall W.H. (1996)., A Comparison Of Multivariate Control Charts For Individual Observations., Journal of Quality Technology, 28(4), 398-408.
  3. Mason R.L. and Young J.C. (1999)., Improving the sensitivity of the T2 statistic in multivariate process control., Journal of Quality Technology, 31(2), 155-165.
  4. Tong L.I., Wang C.H. and Huang C.L. (2005)., Monitoring defects in IC fabrication using a HotellingT2 control chart., IEE Trans. Semiconductor Manufacturing, 18(1), 140-147.
  5. Vargas N.J.A. (2003)., Robust estimation in multivariate control charts for individual observation., journal of quality technology, 35(4), 367-376.
  6. Doganaksoy N., Faltin F.W. and Tucker W.T. (1991)., Identification of out of control quality characteristics in a multivariate manufacturing environment., Communications in Statistics - Theory and Methods, 20(9), 2775-2790.
  7. Hayter A.J. and Tsui K.L. (1994)., Identification and quantification in multivariate quality control problems., Journal of Quality Technology, 26(3), 197-208.
  8. Alt F.B. (1985)., Multivariate Quality Control., The Encyclopedia of Statistical Sciences, Kotz S., Johnson, NL, Read CR(eds), New York: John Wiley, 110-122.
  9. Jackson J.E. (1991)., Multivariate quality control: 40 years later., Statistical Process control in Manufacturing, Keats J.B, Montgomery, D.C (eds). Marcel Dekker, New York. 123-138.
  10. Chua M.K. and Montgomery D.C. (1992)., Investigation and characterization of a control scheme for multivariate quality control., Quality and Reliability Engineering International, 8(1), 37-44.
  11. Pignatiello J.J. and Runger G.C. (1990)., Comparison of multivariate CUSUM charts., Journal of Quality Technology, 22(3), 173-186.
  12. Kourti T. and MacGregor J.F. (1996)., Multivariate SPC methods for process and product monitoring., Journal of Quality Technology, 28(4), 409-428.
  13. Westerhuis J.A., Gurden S.P. and Smilde A.K. (2000)., Generalized contribution plots in multivariate statistical process monitoring., Chemometrics and Intelligent Laboratory Systems 51(1), 95-114.
  14. Maravelakis P.E., Bersimis S., Panaretos J. and Psarakis S. (2002)., Identify the out of control variable in a multivariate control chart., Communications in Statistics –Theory and Methods, 31(12), 2391-2408.
  15. Mason R.L., Tracy N.D. and Young J.C. (1995)., Decomposition of T2 for multivariate control chart interpretation., Journal of Quality Technology, 27(2), 99-108.
  16. Mason R.L., Tracy N.D. and Young J.C. (1996)., Monitoring a multivariate step process., Journal of Quality Technology, 28(1), 39-50.
  17. Mason R.L. and Young J.C. (1999)., Improving the sensitivity of the T2 statistic in multivariate process control., Journal of Quality Technology, 31(2), 155-165.
  18. Alfaro E., Alfaro J.L., Gamez M. and Garcia N. (2009)., A Booting Approach for understanding Out-of-control Signals in Multivariate Control Charts., International Journal of Production Research, 47(24), 6821-6834.
  19. Verron S, Jing L. and Teodor T. (2010)., Fault detection and isolation of faults in a multivariate process with Bayesian networks., Journal of Process control, 20(8), 902-911.
  20. Aparisi F. and Sanz J. (2010)., Interpreting the Out-of-Control Signals of Multivariate Control charts Employing Neural Networks., World Academy of Science, Engineering and Technology, 61, 226-230.