9th International Science Congress (ISC-2019).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Analysis of an SIVR epidemic model with different optimal control strategies

Author Affiliations

  • 1Karnatak Arts College, Dharwad, India
  • 2Karnatak Arts College, Dharwad, India

Res. J. Mathematical & Statistical Sci., Volume 5, Issue (2), Pages 5-13, February,12 (2017)

Abstract

This paper presents the optimal control applied to a non-linear mathematical SIVR epidemic model. To investigate optimal control strategy of the SIVR model to minimize the infection in minimum cost is discussed with help of three controls and are derived and analyzed by considering different objective functions with the same control variables in all strategies. It is demonstrated by the analytical findings, the effect of choosing different objective function on the state variables with the help of numerical results. This study show that different strategies using different objective functions for an epidemic results in a significant effect to slow down the epidemic.

References

  1. Gaff H. and Schaefer E. (2009)., Optimal control applied to vaccination and treatment strategies for various epidemiological models., Mathematical Biosciences and Engineering, 6(3), 469-492.
  2. Granish R., Gilks C., Dye C., De Cock K.M. and Williams B.G. (2009)., Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission:a mathematical model., The Lancet, 373(9657), 48-57. Doi:10.1016/S0140-6736(08), 61697-9.
  3. Hsieh Y. and Sheu S. (2001)., The effect of density-dependent treatment and behaviour change on the dynamics of HIV transmission., Journal of Mathematical Biology, 43(1), 69-80.
  4. Joshi H., Lenhart S., Albright K. and Gipson K. (2008)., Modeling the effect of information campaign on the HIV epidemic in Uganda., Mathematical Biosciences and Engineering, 5(4), 757-770.
  5. Kgosimore M. and Lungu E. (2006)., The effects of vertical transmission on the spread of HIV/AIDS in the presence of treatment., Mathematical Biosciences and Engineering, 3(2), 297-312.
  6. Wang K., Fan A. and Torres A. (2010)., Global properties of an improved hepatitis B virus model., Nonlinear Analysis: Real World Applications, 11(4), 3131-3138. Doi:10.1016/j.nonrwa.2009.11.008.
  7. Pontryagin L.S., Boltyanskii V.G. and Ro V. (1962)., Gamkrelidze., The Mathematical Theory of Optimal Processes, Wiley, New York.
  8. Fleming W.H. and Rishel R.W. (1975)., Deterministic and Stochastic Optimal Control., Springer Verlag, New York.
  9. Adams B.M., Banks H.T., Kwon H. and Tran H.T. (2004)., Dynamic multidrug therapies for HIV: optimal and STI control approaches., Mathematical Biosciences and Engineering, 1(2), 223-241.
  10. Makinde O.D. and Okosun K.O. (2011)., Impact of chemo-therapy on optimal control of malaria disease with infected immigrants., Biosystems, 104(1), 32-41. http://dx.doi.org/10.1016/j.biosystem.2010.12.010.
  11. Okosun K.O., Ouifki R. and Marcus N. (2011)., Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity., Biosystems, 106(2), 136-145. http://dx.doi.org/10.1016/j.biosystems.2011.07.006.
  12. Joshi H.R. (2002)., Optimal control of an HIV immunology model., Optim. Control Appl. Math. 23(4), 199-213.
  13. Blayneh Kbenesh, Cao Yanzhao and Kwon Hee-Dae (2009)., Optimal control of vextor born disease: treatment and prevention., Dis. Cont. Dyn. Syst. B, 11(3), 587-611.
  14. Sunmi L., Chowell G. and Castillo-Chavez C. (2010)., Optimal control for pendemic influenza: The role of limited antiviral treatment and isolation., Journal of Theoretical Biology, 265(2), 136-150.