5th International Young Scientist Congress (IYSC-2019).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Improved energy transfer process in BaZrO3:Eu3+ nanophosphor synthesized by Sol-gel technique

Author Affiliations

  • 1Department of Chemistry, M.D. University, Rohtak-124001, Haryana, India
  • 2Department of Chemistry, M.D. University, Rohtak-124001, Haryana, India
  • 3Department of Chemistry, M.D. University, Rohtak-124001, Haryana, India

Res. J. Material Sci., Volume 6, Issue (4), Pages 1-6, July,16 (2018)

Abstract

The BaZrO3 doped with europium(III) and codoped with alkali ions (Li+, Na+ and K+) nanophosphor series was prepared by sol-gel synthesis. The materials thus obtained were heated to 10500C to improve the crystallinity and their morphology was examined by X-ray diffraction and scanning electron microscopy respectively. XRD spectra showed perovskite cubic structure for the materials BaZrO3 Eu3+, M+(M=Li+, Na+, K+) having smooth and regular surface. The phosphors emitted red color and the emission were due to 5D0&

References

  1. Singh D., Tanwar V., Simantilleke A.P., Mari B., Kadyan P.S. and Singh I. (2016). Rapid synthesis and enhancement in down conversion emission properties of BaAl2O4: Eu2+, RE3+ (RE3+= Y, Pr) nanophosphors. Journal of Materials Science: Materials in Electronics, 27(3), 2260-2266., undefined, undefined
  2. Singh D. and Singh I. (2016), Advanced Magnetic and Optical Materials, ed. by Tiwari A., Lyer P.K., Kumar V., Swart H., Scrivener Publishing LLC, Wiley., undefined, undefined
  3. Huang J., Zhou L., Lan Y., Gong F., Li Q. and Sun J. (2011)., Synthesis and luminescence properties of the red phosphor CaZrO 3: Eu 3+ for white light-emitting diode application., Central European Journal of Physics, 9(4), 975-979.
  4. Boutinaud P., Pinel E., Dubois M., Vink A.P. and Mahiou R. (2005)., UV-to-red relaxation pathways in CaTiO3: Pr3+., Journal of luminescence, 111(1-2), 69-80.
  5. Singh D. and Kadyan S. (2017)., Synthesis and optical characterization of trivalent europium doped M4Al2O9 (M= Y, Gd and La) nanomaterials for display applications., Journal of Materials Science: Materials in Electronics, 28(15), 11142-11150.
  6. Zhang H.X., Kam C.H., Zhou Y., Han X.Q., Buddhudu S., Xiang Q. and Chan Y.C. (2000)., Green upconversion luminescence in Er 3+: BaTiO 3 films., Applied Physics Letters, 77(5), 609-611.
  7. Amami J., Hreniak D., Guyot Y., Pazik R., Goutaudier C., Boulon G. and Strek W. (2006)., Second harmonic generation and Yb3+ cooperative emission used as structural probes in size-driven cubic–tetragonal phase transition in BaTiO3 sol–gel nanocrystals., Journal of luminescence, 119, 383-387.
  8. Mari B., Singh I., Kadyan P.S. and Singh D. (2014), Adv. Sci. Lett., 20 (7-8), 1531., undefined, undefined
  9. Pinel E., Boutinaud P. and Mahiou R. (2004)., What makes the luminescence of Pr3+ different in CaTiO3 and CaZrO3?., Journal of alloys and compounds, 380(1-2), 225-229.
  10. Singh D., Sheoran S., Tanwar V. and Bhagwan S. (2017)., Optical characteristics of Eu (III) doped MSiO 3 (M= Mg, Ca, Sr and Ba) nanomaterials for white light emitting applications., Journal of Materials Science: Materials in Electronics, 28(4), 3243-3253.
  11. Zhang H., Fu X., Niu S. and Xin Q. (2008)., Synthesis and photoluminescence properties of Eu3+-doped AZrO3 (A= Ca, Sr, Ba) perovskite., Journal of alloys and compounds, 459(1-2), 103-106.
  12. Alarcon J., Van der Voort D. and Blasse G. (1992)., Efficient Eu3+ luminescence in non-lanthanide host lattices., Materials research bulletin, 27(4), 467-472.
  13. Liu X. and Wang X. (2007)., Preparation and luminescence properties of BaZrO3: Eu phosphor powders., Optical Materials, 30(4), 626-629.
  14. Erb A., Walker E. and Flükiger R. (1995)., BaZrO3: the solution for the crucible corrosion problem during the single crystal growth of high-Tc superconductors REBa2Cu3O7− δ; RE= Y, Pr., Physica C: Superconductivity, 245(3-4), 245-251.
  15. Liang R., Bonn D.A. and Hardy W.N. (1998)., Growth of high quality YBCO single crystals using BaZrO3 crucibles., Physica C: Superconductivity, 304(1-2), 105-111.
  16. Goretta K.C., Park E.T., Koritala R.E., Cuber M.M., Pascual E.A., Chen N. and Routbort J.L. (1998)., Thermomechanical response of polycrystalline BaZrO3., Physica C: Superconductivity, 309(3-4), 245-250.
  17. Tao S. and Irvine J.T. (2007)., Conductivity studies of dense yttrium-doped BaZrO3 sintered at 1325 C., Journal of Solid State Chemistry, 180(12), 3493-3503.
  18. Yuan Y., Zhang X., Liu L., Jiang X., Lv J., Li Z. and Zou Z. (2008)., Synthesis and photocatalytic characterization of a new photocatalyst BaZrO3., International journal of hydrogen energy, 33(21), 5941-5946.
  19. Cavalcante L.S., Longo V.M., Zampieri M., Espinosa J.W.M., Pizani P.S., Sambrano J.R. and Paskocimas C.A. (2008)., Experimental and theoretical correlation of very intense visible green photoluminescence in Ba Zr O 3 powders., Journal of Applied Physics, 103(6), 063527.
  20. D’Alessandro F., Pacchiarotta G., Rubino A., Sperandio M., Villa P., Carrera A.M. and Congiu A. (2010)., Lean catalytic combustion for ultra-low emissions at high temperature in gas-turbine burners., Energy & Fuels, 25(1), 136-143.
  21. Kirby N.M., van Riessen A., Buckley C.E. and Wittorff V.W. (2005)., Oxalate-precursor processing for high quality BaZrO3., Journal of materials science, 40(1), 97-106.
  22. Cervera R.B., Oyama Y., Miyoshi S., Kobayashi K., Yagi T. and Yamaguchi S. (2008)., Structural study and proton transport of bulk nanograined Y-doped BaZrO3 oxide protonics materials., Solid State Ionics, 179(7-8), 236-242.
  23. Vassen R., Cao X., Tietz F., Basu D. and Stöver D. (2000)., Zirconates as new materials for thermal barrier coatings., Journal of the American Ceramic Society, 83(8), 2023-2028.
  24. van Duin A.C., Merinov B.V., Han S.S., Dorso C.O. and Goddard Iii W.A. (2008)., ReaxFF reactive force field for the Y-doped BaZrO3 proton conductor with applications to diffusion rates for multigranular systems., The Journal of Physical Chemistry A., 112(45), 11414-11422.
  25. Bhide S.V. and Virkar A.V. (1999)., Stability of AB 1/2′ B ″1/2 O 3‐Type Mixed Perovskite Proton Conductors., Journal of the Electrochemical Society, 146(12), 4386-4392.
  26. Münch W., Kreuer K.D., Seifert G. and Maier J. (2000)., Proton diffusion in perovskites: comparison between BaCeO3, BaZrO3, SrTiO3, and CaTiO3 using quantum molecular dynamics., Solid State Ionics, 136, 183-189.
  27. Grinberg I. and Rappe A.M. (2004)., Silver solid solution piezoelectrics., Applied physics letters, 85(10), 1760-1762.
  28. Shi C., Yoshino M. and Morinaga M. (2005)., First-principles study of protonic conduction in In-doped AZrO3 (A= Ca, Sr, Ba)., Solid State Ionics, 176(11-12), 1091-1096.
  29. Romero V.H., De la Rosa E., Salas P. and Velazquez-Salazar J.J. (2012)., Strong blue and white photoluminescence emission of BaZrO3 undoped and lanthanide doped phosphor for light emitting diodes application., Journal of Solid State Chemistry, 196, 243-248.
  30. Borja-Urby R., Diaz-Torres L.A., Salas P., Vega-Gonzalez M. and Angeles-Chavez C. (2010)., Blue and red emission in wide band gap BaZrO3: Yb3+, Tm3+., Materials Science and Engineering: B., 174(1-3), 169-173.
  31. Singh V., Rai V.K., Al-Shamery K., Haase M. and Kim S.H. (2013)., NIR to visible frequency upconversion in Er3+ and Yb3+ co-doped BaZrO3 phosphor., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 108, 141-145.
  32. Borja-Urby R., Diaz-Torres L.A., Salas P., Angeles-Chavez C. and Meza O. (2011)., Strong broad green UV-excited photoluminescence in rare earth (RE= Ce, Eu, Dy, Er, Yb) doped barium zirconate., Materials Science and Engineering: B, 176(17), 1388-1392.
  33. Marí B., Singh K.C., Moya M., Singh I., Om H. and Chand S. (2012)., Characterization and photoluminescence properties of some CaO, SrO and CaSrO2 phosphors co-doped with Eu3+ and alkali metal ions., Optical Materials, 34(8), 1267-1271.
  34. Guan L., Jin L.T., Guo S.Q. and Liu Y.F., (2010), J. Rare Earths, 28, 292., undefined, undefined
  35. Hannan A., Iwasa K., Kohgi M. and Suzuki T. (2000)., Crystal-lattice anomaly of CeSb under high pressure induced by magnetic polaron formation., Journal of the Physical Society of Japan, 69(7), 2358-2359.
  36. Ahmed M.A., Ateia E. and El-Dek S.I. (2003)., Rare earth doping effect on the structural and electrical properties of Mg–Ti ferrite., Materials Letters, 57(26-27), 4256-4266.
  37. Zhang H., Fu X., Niu S., Sun G. and Xin Q. (2004)., Low temperature synthesis of nanocrystalline YVO4: Eu via polyacrylamide gel method., Journal of Solid State Chemistry, 177(8), 2649-2654.
  38. Lu Z., Chen L., Tang Y. and Li Y. (2005)., Preparation and luminescence properties of Eu3+-doped MSnO3 (M= Ca, Sr and Ba) perovskite materials., Journal of Alloys and Compounds, 387(1-2), L1-L4.
  39. Mao Z.Y., Wang D.J., Lu Q.F., Yu W.H. and Yuan Z.H. (2009), Chem. Commun., 346., undefined, undefined
  40. Shimizu Y., Sakagami S., Goto K., Nakachi Y. and Ueda K. (2009)., Tricolor luminescence in rare earth doped CaZrO3 perovskite oxides., Materials Science and Engineering: B., 161(1-3), 100-103.
  41. Blasse G. and Grabmaier B.C. (1994)., A general introduction to luminescent materials., In Luminescent materials, Springer, Berlin, Heidelberg, 1-9.
  42. Ryu H., Singh B.K., Bartwal K.S., Brik M.G. and Kityk I.V. (2008)., Novel efficient phosphors on the base of Mg and Zn co-doped SrTiO3: Pr3+., Acta Materialia, 56(3), 358-363.
  43. Diallo P.T., Jeanlouis K., Boutinaud P., Mahiou R. and Cousseins J.C. (2001)., Improvement of the optical performances of Pr3+ in CaTiO3., Journal of alloys and compounds, 323, 218-222.
  44. Tang J., Yu X., Yang L., Zhou C. and Peng X. (2006)., Preparation and Al3+ enhanced photoluminescence properties of CaTiO3: Pr3+., Materials Letters, 60(3), 326-329.
  45. Marí B., Singh K.C., Cembrero-Coca P., Singh I., Singh D. and Chand S. (2013)., Red emitting MTiO3 (M= Ca or Sr) phosphors doped with Eu3+ or Pr3+ with some cations as co-dopants., Displays, 34(4), 346-351.