4th International Young Scientist Congress (IYSC-2018).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Calculation E.A.M potentials for tungsten trioxide WO3

Author Affiliations

  • 1Research Group of Physical Chemical and Mineralogical Properties of Materials and Faculty of Science and Technology (University Marien NGOUABI), Brazzaville, Congo
  • 2Research Group of Physical Chemical and Mineralogical Properties of Materials, Faculty of Science and Technology (University Marien NGOUABI), Brazzaville, Congo and Center of Geological and Mining Research, Brazzaville, Congo
  • 3Faculty of Science and Technology (University Marien NGOUABI), Brazzaville, Congo and Center of Geological and Mining Research, Brazzaville, Congo
  • 4Research Group of Physical Chemical and Mineralogical Properties of Materials and Normal High School (University Marien NGOUABI), P.O Box 69, Brazzaville
  • 5Research Group of Physical Chemical and Mineralogical Properties of Materials and Faculty of Science and Technology (University Marien NGOUABI), Brazzaville, Congo

Res. J. Material Sci., Volume 6, Issue (2), Pages 9-13, February,16 (2018)


The pair potential model was used to determine the EAM potential of tungsten trioxide. The mixed potential was initially calculated as a linear combination of the potentials of the interacting elements through embedding function, electron density function and energy. For ordered phases, the results of a composition of the potentials at the stoichiometric WO3 concentration do not make possible to obtain the lattice constants of any phase, some transformations have been made to the mixed potential by the adjustment of the variable r for each term of the first and second members of the equation defining the mixed potential. Thus, according to the fixed parameter (a, b), the lattice parameters were found for the trioxide of tungsten (WO3) phase in agreement with the theoretical lattice constants and was used to validate the E.A.M model in the case of an ordered phase under stoichiometric conditions.


  1. Yoo M.H. (1993)., ActaMetallurgica et materialia., 41, Elsevier, 41(4), 987-1002.
  2. Mills M.J., Baluc N., Karnthaler H.P., Liu C.T., Taub A.I., Stoloff N.S. and Koch C.C. (1989)., High temperature ordered intermetallic alloys III., Materials Research Society Symposium Proceedings, 133, 203.
  3. Finnis M.W. and Sinclair J.E. (1984)., A simple empirical N-body potential for transition metals., Philosophical Magazine A, 50(1), 45-55.
  4. Daw M.S. and Baskes M.I. (1984)., Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals., Physical Review B, 29(12), 6443.
  5. Pasianot R. and Savino E.J. (1992)., Embedded-atom-method interatomic potentials for hcp metals., Physical Review B, 45(22), 12704.
  6. Voter A.F. (1994)., Intermetallic Compounds., 1, Principles.Edited by J.H. Westbrook and Westbrook and R.L.Fleischer, John Wiley & Sons Ltd.ISBN: 978-0-471-60880-6
  7. Oh D.J. and Johnson R.A. (1988)., Simple embedded atom method model for fec and hcp metals., Journal of Materials Research, 3(3), 471-478.
  8. Farkas D. and Jones C. (1996)., Interatomic potentials for ternary Nb-Ti-Al alloys., Modelling and Simulation in Materials Science and Engineering, 4(1), 23-32.
  9. Pasianot R., Farkas D. and Savino E.J. (1991)., Empirical many-body interatomic potential for bcc transition metals., Physical Review B, 43(9), 6952.
  10. Foiles S.M. (1985)., Calculation of the surface segregation of Ni-cu alloys with the use of the embedded atom method., Phys.Rev.B, 32, 7685-7693.
  11. Rose J.H., Smith J.R., Guinea F. and Ferrante J. (1984)., Universal features of the equation of state of metals., Physical Review B, 29(6), 2963.
  12. Foiles S.M. and Daw M.S. (1985)., A theoretical study of the order–disorder transitions for hydrogen on Pd (111)., Journal of Vacuum Science & Technology A, 3(3), 1565-1566.
  13. Nsongo T., Ni X. and Chen G. (2002)., Theoretical Analysis of Lattice Parameter Effect on Order-Disorder Transformation Based on Pair Potential., Journal of University of Science and Technology Beijing, 9(1), 53-58.
  14. Timothée Nsongo (2001)., computer simulation for TiAl binary system., Ph.D dissertation, University of Science and Technology Beijing, China.
  15. Morinaga M., Saito J., Yukawa N. and Adachi H. (1990)., Electronic effect on the ductility of alloyed TiAl compound., Acta Metallurgica et Materialia, 38(1), 25-29.
  16. Morinaga M., Yukawa N. and Adachi H. (1985)., Alloying effect on the electronic structure of BCC Fe., Journal of Physics F: Metal Physics, 15(5), 1071.
  17. Farkas D. (1994)., Interatomic potentials for Ti-Al with and without angular forces., Modelling and Simulation in Materials Science and Engineering, 2(5), 975.
  18. Barabash O.M. and Voinash V.Z. (1996). Metallofizika I Novejshie Teknolog II 18(3)., undefined, undefined
  19. duwez P. and Taylors J.L. (1952)., Crystal Structure of TiAl., J.Met., 70, 183.
  20. Chubb S.R., Papaconstantopoulos D.A. and Klein B.M. (1988)., First-principles study of L 1 0 Ti-Al and V-Al alloys., Physical Review B, 38(17), 12120.
  21. Baskes M.I. (1992)., Modified embedded-atom potentials for cubic materials and impurities., Physical Review B, 46(5), 2727.
  22. Foiles S.M., Baskes M.I. and Daw M.S. (1986)., Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys., Physical review B, 33, 7983.
  23. Foiles S.M. and Daw M.S. (1987)., application of the embedded atom method to Ni3Al., J. Mater.Res., 2, 5-15.
  24. Johnson R.A. (1988)., analytic nearest neighbor model for fcc metals., Phys. Rev.B, 37, 3924.
  25. Johnson R.A. (1989)., Alloy models with the embedded-atom method., Physical Review B, 39(17), 12554.
  26. Johnson R.A. (1990)., Phase stability of fcc alloys with the embedded atom method., Phys. Rev. B., 41, 9717.
  27. Ercolessi F., Parrinello M. and Tosatti E. (1986)., Au (100) reconstruction in the glue model., Surface Science, 177(2), 314-328.
  28. Rosato V., Guillope M. and Legrand B. (1989)., Thermo dynamical and structural properties of fcc transition metals using a simple tight-binding model., Philosophical Magazine A, 59, 321-336.
  29. Yoo M.H. and Daw M.S. (1989)., MI Baskes in Atomistic Simulation of Materials-Bevond Pair Potentials, edited by V. Vitek and DJ Slorovitz., (Plenum, New York), 181ISBN: 978-1-4684-5705-6
  30. Taylor A. and Jones R.M. (1958)., Constitution and magnetic properties of iron-rich iron-aluminum alloys., Journal of Physics and Chemistry of Solids, 6(1), 16-37.
  31. De Fontaine D. (1979)., Configurational thermodynamics of solid solutions., Solid state physics, 34, 73-274.
  32. Nsongo T., Ni X., Chen G. and Chan K.M. (2001)., Order-disorder Transformation for TiAl with L1~ 0 Structure at Stoichiometrical Composition., rare metals-beijing-english edition, 20(3), 147-151.
  33. Dearnaley G. (1980)., Electronic Structure and Properties of Solids: The Physics of the Chemical Bond., (W.H. Freeman and Co,San Francisco), ISBN: 1306353793
  34. Greenberg B.F., Anisimov V.I., Gornostirev Y.N. and Taluts G.G. (1988)., Possible factors affecting the brittleness of the intermetallic compound TiAl. II. Peierls manyvalley relief., Scripta metallurgica, 22(6), 859-864.