International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Optimality sizing of hybrid electrical power plant composed of photovoltaic generator, wind generator and biogas generator

Author Affiliations

  • 1Equipe de Recherche en Sciences de l'Ingénieur (ERSI), Department of Electrical Engineering, InstitutUniversitaire de Technologie, UniversityNazi Boniof Bobo-Dioulasso, 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso
  • 2Equipe de Recherche en Sciences de l'Ingénieur (ERSI), Department of Electrical Engineering, EcoleNationale Supérieure d'Ingénieurs (ENSI), University of Lomé, 01 BP 1515 Lomé 01, Lomé, Togo
  • 3Equipe de Recherche en Sciences de l'Ingénieur (ERSI), Department of Electrical Engineering, EcoleNationale Supérieure d'Ingénieurs (ENSI), University of Lomé, 01 BP 1515 Lomé 01, Lomé, Togo
  • 4Equipe de Recherche en Sciences de l'Ingénieur (ERSI), Department of Electrical Engineering, EcoleNationale Supérieure d'Ingénieurs (ENSI), University of Lomé, 01 BP 1515 Lomé 01, Lomé, Togo

Res. J. Engineering Sci., Volume 7, Issue (11), Pages 20-29, December,26 (2018)

Abstract

This article propose sizing and optimization model for hybrid renewable energy plant, composed of photovoltaic generator, biogas generator, wind generator, without storage, for rural and peri-urban area decentralized electrification. Technico-economic optimization is carried out by the genetic algorithm. The Hybrid plant model developed here incorporates environmental considerations, calculating carbon dioxide emissions, before and after biogas upgrading to electricity. The simulation is performed with Ouahigouya's site characteristics, located in Sahelian zone of Burkina Faso. The simulation results give a photovoltaic field peak power of 50MW, coupled with 7MW inverter, 5 wind turbines of 7.5MW each and 3 biogas generators of 1MW each, for an electricity demand at the site of 1463 MWh per day with peaks of 182MW. The cost per kWh of electricity generated by this hybrid power plant is 0.508$. Using biogas in addition to solar energy and wind power as hybrid power station energy sources has made it possible to reduce the polluting gases and greenhouse gas emissions in a very significant way.

References

  1. Alkhalil F. (2011)., Supervision, Economie et Impact sur l'Environnement d'un Système d, Thèse de Doctorat. HAL E-publication, France. 1-204, HAL Id: tel-00652331.
  2. Bouharchouche A., Bouabdallah A., Berkouk E.M., Diaf S. and Belmili H. (2014)., Conception et réalisation d'un logiciel de dimensionnement d'un système d'énergie hybride éolien-photovoltaïque., Revue des Energies Renouvelables, 17(3), 359-376.
  3. Brihmat Fouzia (2012)., Etude conceptuelle d'un système de conditionnement de puissance pour une centrale hybride PV-Eolien (Mémoire de Magister non publié)., Université Mouloud Mammeri, Tizi-Ouzou, Algérie.
  4. Kanchev H. (2014)., Gestion des Flux Energétiques dans un Système Hybride de Sources d'Energie Renouvelable: Optimisation de la Planification Opérationnelle et Ajustement d'un Micro Réseau Electrique Urbain., Thèse de Doctorat. HAL E-publication, France, 1-207, HAL Id: tel-01159506.
  5. Bouharchouche A., Berkouk E.M. and Ghennam T. (2013)., Control and Energy Management of a Grid Connected Hybrid Energy System PV-Wind with Battery Energy Storage for Residential Applications., Souvenir from Eighth International Conference and Exhibition on Ecological Vehicles and Renewable Energies, EVER'13.Monte-Carlo, Monaco, 27th-30th March.
  6. Dipama J., Teyssedou A. and Sorin M. (2008)., Synthesis of heat exchanger networks using genetic algorithms., Applied Thermal Engineering, 28(14-15), 1763-1773.
  7. Fathima A.H. and Palanisamy K. (2015)., Optimization in microgrids with hybrid energy systems-A review., Renewable and Sustainable Energy Reviews, 45, 431-446.
  8. Kouam A. and Chuen G. (2015)., Optimization of a hybrid system of energy production for isolated site: case of the city of Ngaoundéré., Renewable Energies Review, 18(4), 529-538.
  9. Bao Y., Chen X., Wang H. and Wang B. (2013)., Genetic algorithm based optimal capacity allocation for an independent wind/pv/diesel/battery power generation system., Journal of information &computational science, 10(14), 4581-4592.
  10. Olatomiwa L.J., Mekhilef S. and Huda A.S.N. (2014)., Optimal sizing of hybrid energy system for a remote telecom tower: A case study in Nigeria., In Energy Conversion (CENCON), 2014 IEEE Conference on, 243-247.
  11. Chen L., Li Y., Xiao J. and Wei X. (2015)., Optimal configuration for distributed generations in micro-grid system considering diesel as the main control source., J. Energy Power Eng, 9, 493-499.
  12. Kanchev H., Colas F., Lazarov V. and Francois B. (2014)., Emission reduction and economical optimization of an urban microgrid operation including dispatched PV-based active generators., IEEE Transactions on Sustainable Energy, 5(4), 1397-1405.
  13. Belanger-Gravel Joséanne (2011)., Analyse technico-économique d'un système hybride éolien-photovoltaïque en comparaison avec les systèmes photovoltaïque et éolien seuls (Mémoire de Maîtrise ès Sciences Appliquées non publié)., Ecole Polytechnique, Montréal, Canada.
  14. Kaabeche A., Belhamel M. and Ibtiouen R. (2010)., Optimal sizing method for stand-alone hybrid PV/wind power generation system., Revue des Energies Renouvelables (SMEE
  15. Ko M.J., Kim Y.S., Chung M.H. and Jeon H.C. (2015)., Multi-Objective Optimization Design for a Hybrid Energy System Using the Genetic Algorithm., Energies, 8(4), 2924-2949.
  16. Kumar Alok (2016)., A Genetic Algorithm optimized PI Controller for Vector Controlled Drive., Research Journal of Engineering Sciences, 5(5), 9-15.
  17. Zhou W., Lou C., Li Z., Lu L. and Yang H. (2010)., Current Status of Research on Optimum Sizing of Stand-Alone Hybrid Solar-Wind Power Generation Systems., Applied Energy, 87(2), 380-389.
  18. Bokovi Yao (2013)., Planification optimale des réseaux électriques hautes tension par les algorithmes génétiques avec insertion des sources d'énergie électrique renouvelables (Thèse de Doctorat non publiée)., Université de Lomé, Togo.
  19. Gaoua Yacine (2014)., Modèles mathématiques et techniques d, Thèse de Doctorat. HALE-publication, France, 1-175. HAL Id : tel-01096744.
  20. Javadi M.R., Mazlumi K. and Jalilvand A. (2011)., Application of GA, PSO and ABC in Optimal Design of a Stand-Alone Hybrid System for North-West of Iran., Souvenir from 7th International Conference on Electrical and Electronics Engineering, Bursa, Turkey,1st - 4th Dec., 204-211.
  21. Ouedraogo S., Ajavon A.S.A., Kodjo M.K., Salami A.A. and Bedja K.S. (2017)., Approche optimale de dimensionnement d'une centrale électrique hybride à énergies renouvelables : cas du solaire photovoltaïque, de l'éolien et du groupe électrogène au biogaz., Souvenir du2ème Colloque Scientifique International, Kara, Togo, 11- 15.
  22. Nguewo Yamegueu D. (2012)., Expérimentation et Optimisation d'un Prototype de Centrale Hybride Solaire PV/Diesel sans Batteries de Stockage: Validation du Concept, (Thèse de Doctorat non publiée). Université de Perpignan, France.
  23. De Jongk A. (1975)., An analysis of behavior of a class of genetic adaptative systems., PhD Thesis. Technical report 185, USA, 1-256. doi: 10.1234/12345678.
  24. Holland J.H. (1975)., Adaptation in Natural and Artificial Systems., 2nd edition, University of Michigan Press, Ann Arbor: MIT Press, ISBN: 0-262-58111-6.
  25. Deb K., Pratap A., Agarwal S. and Meyarivan T. (2002)., A fast and elitist multiobjective genetic algorithm: NSGA-II., IEEE Transactions On Evolutionary Computation, 6(2), 182-197.
  26. Homer energy (2017)., Homer software for microgrid and distributed generation power system design and optimization., https://www.homerenergy.com. Consulted on 10/12/2017.
  27. Sidibe S. (2011)., Contribution to the study of cotton vegetable oils and Jatropha curcas as biofuel in direct injection diesel engines.,