International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Evolution of the accumulated damage along the envelope curve in the orthotropic directions of Pericopsis elata (Assamela)

Author Affiliations

  • 1Laboratoire de Mécanique et de Modélisation des Systèmes Physiques (L2MSP), University of Dschang, Cameroon and Laboratoire d’Ingénierie des Systèmes Industriels et de l’Environnement, IUT-FV Bandjoun, Cameroon
  • 2Laboratoire d’Engineering Civil et Mécanique (LECM) Ecole Nationale Supérieure Polytechnique de Yaoundé BP 8390 Yaoundé
  • 3Laboratoire de Mécanique et de Modélisation des Systèmes Physiques (L2MSP), University of Dschang, Cameroon
  • 4Laboratoire de Mécanique et de Modélisation des Systèmes Physiques (L2MSP), University of Dschang, Cameroon
  • 5Laboratoire de Mécanique et de Modélisation des Systèmes Physiques (L2MSP), University of Dschang, Cameroon
  • 6Laboratoire d’Ingénierie des Systèmes Industriels et de l’Environnement, IUT-FV Bandjoun, Cameroon

Res. J. Engineering Sci., Volume 7, Issue (10), Pages 10-17, November,26 (2018)

Abstract

Several researches have been carried out to model the behavior of materials, among which the models based on the mechanics of damage which offers an interesting framework for modelling the behavior of wood material. In our work we used the Breccolotti model to describe the behavior of the damage as a function of the material deformation along the tangential, radial and longitudinal directions by introducing the influence of parameters of the stress-strain curve the said model. Then we evaluated the evolution of the modulus of elasticity as a function of the damage also in the three directions of orthotropic and finally we observed a kinetics with two phases of damage in the tangential and radial directions while a kinetics with three phases of damage were observed longitudinal direction.

References

  1. Sinha B., Gefstle K. and Tulin L. (1964)., Stress-strain relations for concrete., Eng. Struct., 30, 695-706.
  2. Karsan I. and Jirsa J. (1969)., Behavior of concrete under compressive loading., J. Struct. Div., 95, 2543-2563.
  3. Osorio E., Baim J. and Mar A. (2013)., Lateral behavior of concrete under uniaxial compressive cyclic loading., Mater. Struct., 46(5), 709-724.
  4. Aslani F. and Jowkarmeimandi R. (2012)., Stress-strain model for concrete under cyclic loading., Magazine of concrete research, 64(8), 673-685.
  5. Guitard D. (1987)., Mécanique du matériau bois et composites., Editions-Cépaduès, 2 85428 152 7.
  6. Kollmann F.F. (1968)., Mechanics and rheology of wood., In Principles of wood science and technology, 292-419. Springer, Berlin, Heidelberg.
  7. Mohammed M.H., Falk K.W., Stefan H. and Hans J.H. (2014)., Rheological model for wood. Computational physics for engineering material., IfB, ETH Zurich, Schafmattstrasse 6, CH-8093 Zurich, Switzerland.
  8. Hognestad E., Hanson N.W. and McHenry D. (1955)., Concrete stress distribution in ultimate strength design., Journal Proceedings, 52(12), 455-480.
  9. Popovics S. (1970)., A review of stress-strain relationships for concrete., In Journal Proceedings, 67(3), 3, 243-248.
  10. Tsai W.T. (1988)., Uniaxial compression strain-stress relations of concrete., J Struct Engng, 114(9), 2133-2136.
  11. Sima J.F., Roca P. and Molins C. (2008)., Cyclic constitutive model for concrete., Engineering Structures, 30(3), 695-706.
  12. Ghousson M.A. (2014)., The cyclic loading of concrete in a specific stress range., Jordan journal of civil engineering, 8(3), 271-281.
  13. Mazars J. and Pijaudier-Cabot G. (1989)., Continuum damage theory, Application to concrete., J Engng Mech ASCE, 115(2), 345-365.
  14. Faria R., Oliver J. and Cervera M. (1998)., A strain-based plastic viscous-damage model for massive concrete structures., Int J Solids Struct, 35(14), 1533-1558.
  15. Saetta A., Scotta R. and Vitaliani R. (1999)., Coupled environmental-mechanical damage model of RC structures., J Engng Mech ASCE, 125(8), 930-940.
  16. Saetta A., Scotta R. and Vitaliani R. (2000)., Analysis of masonry vaulted structures by using 3-D damage model., Proc European congress on computational methods in applied sciences and engineering.
  17. Collins M., Mitchell D. and Macgregor J. (1993)., Structural design considerations for high-strength., concrete, Concr. Int., 15(5), 27-34.
  18. Breccolotti M., Bonfigli M.F., D’Alessandro A. and Materazzi A.L. (2015)., Constitutive modeling of plain concrete subjected to cyclic uniaxial compressive loading., Construction and building Materials, 94, 172-180.
  19. Lim J.C. and Ozbakkaloglu T. (2014)., Strain-strain model for normal and light-weight concretes under uniaxial and triaxial compression., Constr.Build. Mater., 71, 492-509.
  20. Alliche A. (2004)., Damage model for fatigue loading of concrete., International Journal of Fatigue, 26, 915-921.
  21. Fozao D.S., Foudjet A.E., Kouam A. and Fokwa D. (2014)., Modeling the stress-strain behavior of bamboo under uniaxial loading., Revue Scientifique et Technique Forêt et Environnement du Bassin du congo, 2, 9-27.