Effect of different reinforcement on mechanical properties of aluminium metal matrix composites

Author Affiliations

  • 1Department of Mechanical Engineering, Bhilai Institute of Technology, Durg, CG, India
  • 2Department of Mechanical Engineering, Bhilai Institute of Technology, Durg, CG, India

Res. J. Engineering Sci., Volume 6, Issue (7), Pages 39-45, July,26 (2017)

Abstract

There is a significant role of reinforcing materials in determining the overall performance of the composites. Metal matrix composites (MMCs) shows very attractive physical (density, thermal expansion etc.) and mechanical (tensile, compressive and yield strength, toughness, hardnessetc.) properties for aerospace, automotive and numerous other applications where they can successfully replace other materials like cast iron and steel. Aluminium matrix composites (AMCs) are potential candidate materials for numerous applications because they have combination of above properties; enhancement in such properties is obtained by suitable tailoring reinforcements in base metal. In the casting process the reinforcement particles like metal borides (TiB2), metal oxides (Al2O3), metal carbides (SiC, TiC, etc.) and metal nitrides (Si3N4, AlN) are reinforced in the melt of aluminium matrix. The widely used reinforcing materials to fabricate AMCs are silicon carbide (SiC) and aluminium oxide (Al2O3) in the form of particles or whiskers. Mechanical properties are controlled by initial processing method, reinforcement size, weight faction etc. The ceramic particles reinforced AMCs are termed as new generation material and these can be tailored and engineered to achieve enhanced properties. In present review an attempt has been made to describe the effect of tailoring different reinforcements in aluminium alloy on aspects relating to mechanical properties. The successful commercial production of AMCs is finally depending on their cost effectiveness for different applications.

References

  1. A. (1998)., Developing trends in disc brake technology for rail application., Mater. Sci. Technol., 14(9-10), 857-863.
  2. Dwivedi R. (1995)., Development of Advanced Reinforced Aluminum Brake Rotors., SAE Technical Paper Series, 950264, Warrendale, PA, USA, 8.
  3. Casati R. and Vedani M. (2014)., Metal matrix composites reinforced by nano-particles-a review., Metals, 4(1), 65-83.
  4. Alaneme K.K. and Olubambi P.A. (2013)., Corrosion and wear behaviour of rice husk ash-alumina reinforced Al-Mg-Si alloy matrix hybrid composites., J Mater Res Technol, 2(2), 188-194.
  5. Alaneme K.K. and Bodunrin M.O. (2013)., Mechanical behaviour of alumina reinforced AA 6063 metal matrix composites developed by two step – stir casting process., ActaTechCorvininesis – Bull Eng, 6(3), 105-110. [cited 2014 Aug 25], [Internet] available from: http://acta.fih.upt.ro/pdf/2013-3/ACTA-2013-3-18.pdf
  6. Alaneme K.K. and Aluko A.O. (2012)., Fracture toughness (K1C) and tensile properties of as-cast and age-hardened aluminium (6063) –silicon carbide particulate composites., Sci Iran, 19(4), 992-996.
  7. Vencl A., Bobic I., Arostegui S., Bobic B., Marinković A. and Babić M. (2010)., Structural, mechanical and tribological properties of A356 aluminium alloy reinforced with Al2O3, SiC and SiC + graphite particles., Journal of Alloys and Compounds, 506(2), 631-639.
  8. Ansary Yara A., Montazerianb M., Abdizadehb H. and Baharvandic H.R. (2009)., Microstructure and Mechanical Properties of Aluminium Alloy Mtrix Composite Reinforced with Nano-particle MgO., Journal of Alloys and Compounds, 484(1-2), 400-404.
  9. Hashim J., Looney L. and Hashmi M.S.J. (1999)., Metal matrix composites: production by the stir casting method., Journal of Materials Processing Technology, 92-93, 1-7.
  10. Sirahbizu Yigezu B., Mahapatra M.M. and Jha P.K. (2013)., Influence ofreinforcement type on microstructure, hardness, and tensileproperties of an aluminum alloy metal matrix composite., J Miner Mater CharactEng, 1(4), 124-130.
  11. Ceschini L., Bosi C., Casagrande A. and Garagnani G.L. (2001)., Effect of thermal treatment and recycling on the tribological behaviour of an AlSiMg– SiCp composite., Wear, 251, 1377-1385.
  12. Al-Rubaie Kassim S., Yoshimura Humberto N. and de Mello Jose Daniel Biasoli (1999)., Two body abrasive wear of Al– SiC composites., Wear, 233-235, 444-454.
  13. Shipway P.H., Kennedy A.R. and Wilkes A.J. (1998)., Sliding wear behaviour of aluminum-based metal matrix composites produced by a novel liquid route., Wear, 216(2), 160-171.
  14. Chen M.Y. and Breslin M.C. (2001)., Friction behavior of co-continuous alumina/ aluminum composites with and without SiC reinforcement., Wear, 249(10-11), 868-876.
  15. Ribes H., Suery M., Esperance G.L. and Legoux J.G. (1990)., Microscopic examination of the interface region in 6061‐Al/SiC composites reinforced with as‐received and oxidized SiC particles., Metallurgical and Materials Transactions A, 21(9), 2489-2496.
  16. Thakur S.K. and Dhindaw B.K. (2001)., The influence of interfacial characteristics between SiCp and Mg/Al metal matrix on wear, coefficient of friction and microhardness., Wear, 247(2), 191-201.
  17. Poirier D., Drew R.A.L., Trudeau M.L. and Gauvin R. (2010)., Fabrication and properties of mechanically milled alumina/aluminum nanocomposites., Mater SciEng A, 527(29-30), 7605-7614.
  18. Miyajima T., Iwai Y. (2003)., Effects of reinforcements on sliding wear behavior of aluminium matrix composites., Wear, 255(1-6), 606-616.
  19. Singh M., Mondal D.P., Modi O.P. and Jha A.K. (2002)., Two body abrasive wear behaviour of aluminium alloy Sillimanite particle reinforced composite., Wear, 253(3-4), 357-368.
  20. Smith W.F. and Hashemi J. (2008)., Materials science and engineering., Tata McGraw Hill Education Private Limited”, New Delhi, ISBN- 13: 978-0- 07-066717-4.
  21. Das S. and Prasad B.K. (1993)., Tribological behaviour of aluminium alloy composites: A comparative study with a copper-based alloy., Wear, 162-164, 64-74.
  22. Prasad B.K., Dan T.K. and Rohatgi P.K. (1993)., Characterization and microstructural modifications of a pressure die cast eutectic aluminum-silicon alloy-graphite composite., Mater.Trans., 34(5), 474-480. ISSN 1345-9678.
  23. Terry B. and Jones G. (1990)., Metal matrix composites: current developments and future trends in industrial research and applications., Elsevier Science: Oxford, England.
  24. Nutt S.R. (1988)., Microstructure and growth model for Rice-Hull-Derived SiC whiskers., Journal of American Ceramic Society, 71(3), 149-156.
  25. Bonfield W. (1974)., Interfaces in Metal Matrix Composites., Ed Metcalfe A G, Academic Press, New York, 363.
  26. Kumar Chawla Krishan and Meyers M.A. (1999)., Mechanical behavior of materials., Prentice Hall.
  27. Harris S.J. (1988)., Cast metal matrix composites., Mater Sci Technol, 4(3), 231-239.
  28. Maruyama B. (1998)., Progress and promise in aluminium metal matrix composites., AMPTIAC News Lett, 2(3).
  29. Miracle D. (2005)., Metal matrix composites-from science to technological significance., Compos SciTechnol, 65(15), 2526-2540.
  30. Kayal Sourav, Behera R., Nandi T. and Sutradhar G. (2011)., Solidification behavior ofstircast Al alloy metal matrix composites., International Journal of Applied Engineering Research, 2(2), 350.
  31. Amirkhanlou S. and Niroumand B. (2010)., Synthesis and characterization of 356-SiCp composites by stir casting and compocasting methods., Trans. Nonferrous Met.Soc. China, 20, s788-s793.
  32. Doel T.J.A. and Bowen P. (1996)., Tensile properties of particulate-reinforced metal matrix composites Composites., Composites Part A, Applied Science and Manufacturing, 27(8), 655-665.
  33. Gurcan A.B. and Baker T.N. (1995)., Wear behaviour of AA6061 aluminium alloy and its composites., Wear, 188(1-2), 185-191.
  34. Kumar Veeresh G.B., Rao C.S.P. and Selvaraj N. (2012)., Studies on mechanical and dry sliding wear of Al6061–SiC composites., Composites, Part B, Eng., 43(3), 1185-1191.
  35. Ozben Tamer, Kilickap Erol and Cakir Orhan (2008)., Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC., Journal of materials processing technology, 198(1-3), 220-225.
  36. Ramachandra M. and Radhakrishna K. (2004)., Study of abrasive wear behaviour of al-si (12%)-SiC metal matrix composite synthesised using vortex method., International Symposium of Research Students on Materials Science and Engineering, 20-22, Chennai, India.
  37. Sajjadi S.A., Ezatpour H.R., Beygi H. (2011)., Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting., Materials Science and Engineering A, 528, 8765-8771.
  38. Su Hai, Gao Wenli, Feng Zhaohui and Lu Zheng (2012)., Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites., Materials and Design, 36, 590-596.
  39. Kamat S.V., Hirth S.P. and Mehrabin R.M. (1989)., Mechanical properties of particulate-reinforced aluminum-matrix composites., Acta Metallurgy, 37(9), 2395-2402.
  40. Park B.G., Crosky A.G. and Hellier A.K. (2008)., Fracture toughness of microsphere Al2O3–Al particulate metal matrix composites., Composites Part B, 39(7-8), 1270-1279.
  41. Han I.S., Seo D.W., Kim S.Y., Hong K.S., Guahk K.H. and Lee K.S. (2008)., Properties of silicon nitride for aluminum melts prepared by nitridedpressureless sintering., Journal of the European Ceramic Society, 28(5), 1057-1063.
  42. Sharma Pardeep, Sharma Satpal and Khanduja Dinesh (2015)., Production and some properties of Si3N4 reinforced aluminium alloy composites., Journal of Asian Ceramic Societies, 3(3), 352-359.
  43. Arik H. (2008)., Effect of mechanical alloying process on mechanical properties of α-Si3N4 reinforced aluminum-based composite materials., materials and design, 29(9), 1856-1861.
  44. Song M.H., Wu G.H., Yang W.S., Jia W., Xiu Z.Y. and Chen G.Q. (2010)., Mechanical Properties of Cf/Mg Composites Fabricated by Pressure Infiltration Method., Journal of Materials Science & Technology, 26(10), 931-935.
  45. Ramesh C.S., Keshavamurthy R., Channabasappa B.H. and Ahmed Abrar (2009)., Microstructure and mechanical properties of Ni–P coated Si3N4 reinforced Al6061 composites., Mater SciEng A, 502, 99-106.
  46. Kumar Ashok and Murugan N. (2012)., Metallurgical and mechanical characterization of stir cast AA6061-T6–AlNp Composite., Materials and Design, 40, 52-58.
  47. Jung J. and Kang S. (2004)., Advances in manufacturing boron carbide–aluminum composites., J Am Ceram Soc, 87(1), 47-54.
  48. Kennedy A.R. and Brampton B. (2001)., The reactive wetting and Incorporation of B4C particles into molten aluminium., Scripta Mater, 44, 1077-1082.
  49. Mohanty R.M., Balasubramanian K. and Seshadri S.K. (2008)., Boron carbide-reinforced aluminum 1100 matrix composites: fabrication and properties., Mater SciEng A., 498, 42-52.
  50. Baradeswaran A. and ElayaPerumal A. (2013)., Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites., Composites: Part B, 54, 146-152.
  51. Banerji A., Surappa M.K. and Rohatgi P.K. (1983)., Cast aluminum alloys containing dispersions of zircon particles., Metallurgical and Materials Transactions B, 14(2), 273-283.
  52. Kaur K. and Pandey O.P. (2010)., Wear and microstructural characteristics of spray atomizedzircon sand reinforced LM13 alloy., Mat.-wiss. u.Werkstofftech., 41(7), 568-574.
  53. Okafor E.G. and Aigbodion V.S. (2010)., Effect of Zircon Silicate Reinforcements on the Microstructure and Properties of as Cast Al-4.5Cu Matrix Particulate Composites Synthesized via Squeeze Cast Route., Tribology in industry, 32(2), 31-37.
  54. Scudino S., Liu G., Prashanth K.G., Bartusch B., Surreddi K.B., Murty B.S. and Eckert J. (2009)., Mechanical properties of Al-based metal matrix composites reinforced with Zr-based glassy particles produced by powder metallurgy., ActaMaterialia, 57(6), 2029-2039.
  55. Jha A.K., Prasad S.V. and Upadhyaya G.S. (1989)., Dry sliding wear of sintered 6061 aluminium alloy–graphite particle composites., Tribol. Int., 22(5), 321-327.
  56. Mohan S., Pathak J.P., Gupta R.C. and Srivastava S. (2002)., Wear behaviour of graphitic aluminium composite sliding under dry conditions., Zeitschrift für Metallkunde, 93(12), 1245-1251.
  57. Gibson P.R., Clegg A.J. and Das A.A. (1984)., Wear of cast aluminium-silicon alloys containing graphite., Wear, 95(2), 193-198.
  58. Seah K.H.W., Sharma S.C., Girish B.M. and Lim S.C. (1996)., Wear Characteristics of as Cast Za-27/Graphite Particulate Composites., Mater.Des., 17(2), 63-67.
  59. Abdizadeh Hossein, Ebrahimifard Reza and Baghchesara Mohammad Amin (2014)., Investigation of microstructure and mechanical properties of nanoMgO reinforced Al composites manufactured by stir casting and powder metallurgy methods: A comparative study., Composites: Part B., 56, 217-221.
  60. Andrews J.B. and Seneviratne M.V. (1984)., A new, highly wear-resistant aluminum-silicon casting alloy for automotive engine block applications., AFS Trans., 92, 209.
  61. Mohan S.K.R., Jayabalan K.P. and Rajaraman A. (2012)., Properties of fly ash based coconut fiber composite., Am.J. Eng. Applied Sci., 5, 29-34. DOI: 10.3844/ajeassp.2012.29.34
  62. Gikunoo E., Omotoso O. and Oguocha I.N.A. (2005)., Effect of flyash particles on the mechanical properties of aluminium casting alloy A535., Mater SciTechnol, 21(2), 143-152.
  63. Ramachandra M. and Radhakrishna K. (2007)., Effect of reinforcement of fly ash on sliding wear, slurry erosive wear and corrosive behavior of aluminium matrix composite., Wear, 262(11), 1450-1462.
  64. Mahendra Boopathi M., Arulshri K.P. and Iyandurai N. (2013)., Evaluation Of Mechanical Properties Of Aluminium Alloy2024 Reinforced With Silicon Carbide And Fly Ash Hybrid Metal Matrix Composites., American Journal of Applied Sciences, 10(3), 219-229. ISSN: 1546-9239.