9th International Science Congress (ISC-2019).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Natural Fiber as a substitute to Synthetic Fiber in Polymer Composites:A Review

Author Affiliations

  • 1 Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet-3114, BANGLADESH
  • 2

Res. J. Engineering Sci., Volume 2, Issue (4), Pages 46-53, April,26 (2013)

Abstract

This work presents a brief overview of the improvement of the mechanical properties (tensile and flexural strength and the corresponding modulus of elasticity) of natural fiber reinforced polymer materials. The mechanical strength of the natural fiber reinforced polymer composites (NFRPCs) has been compared with that of glass fiber reinforced polymer composites and it is found that for achieving equivalent mechanical strength of the material, the volume fraction of the natural fiber should be much higher than that of the glass fiber. The eco-friendly nature (emission, economy of energy) of the production of components of NFRPCs has also been briefly discussed. It is concluded that NFRPCs have already been proven alternative to SFRPCs in many applications in automotive, transportation, construction and packaging industries, and the production of natural fiber being labor-intensive, the NFRPC industry will create new employment and will contribute to the poverty alleviation program in developing countries.

References

  1. Isaac M. and Ishai D.O. Engineering Mechanics of Composite Materials, (Oxford, New York), 3-13 (2006)
  2. Coutinho F.M.B. and Costa T.H.S., Performance of polypropylene-wood fiber composites, Polym. Test.,18(8),581-587 (1999)
  3. Saheb D.N. and Jog J.P., Natural Fiber Polymer Composites: A Review, Adv. Polym. Technol., 18(4) 351-363 (1999)
  4. Bettini S.H.P., Uliana A.T. and Holzschuh D.J., Effect of Process Parameters and Composition on Mechanical, Thermal and Morphological Properties of Polypropylene/Sawdust Composites, J. Appl. Polym. Sci., 108, 2233-2241(2008)
  5. Mohanty A.K., Misra M. and Drzal L.T., Natural Fibers, Biopolymers and Biocomposites, Boca Raton (FL: CRC Press) (2005)
  6. Poostforush M., Al-Mamun M. and Fasihi M., Investigation of Physical and Mechanical Properties of High Density Polyethylene/Wood Flour Composite Foams, Res. J. Engineering Sci., 2(1), 15-20 (2013)
  7. Baley C., Analysis of the flax fibers tensile behavior and analysis of tensile stiffness increase, Compos. Part A, 33(7), 939-348 (2002)
  8. Karmaker A.C., Hoffmann A. and Hinrichsen G.J., Influence of water uptake on the mechanical properties of jute fiber-reinforced polypropylene, J.Appl. Polym. Sci.,54, 1803-1807 (1994)
  9. Rana A.K., Mandal A., Mitra B.C., Jacobson R., Rowell R. and Banerjee A.N., Short Jute Fiber-Reinforced Polypropylene Composites: Effect of Compatibilizer, . Appl. Polym. Sci., 69, 329-338 (1998)
  10. Bledzki A.K., Mamun A.A. andFaruk O., Abacafibre reinforced PP composites and comparison with jute and flax fibre PP composites, Express. Polym. Lett., 1(11), 755-762 (2007)
  11. Biswas S., Kindo S. and Patnaik A., Effect of Fiber Length on Mechanical Behavior of Coir Fiber Reinforced Epoxy Composites, Fiber. Polym.,12, 73-78 (2011)
  12. Taj S., Munawar M.A. and Khan S.U., Natural Fiber-reinforced polymer composites, Proc. Pakistan. Acad. Sci., 44(2), 129-144 ( 2007)
  13. James H. andDan H., Natural-Fiber-Reinforced Polymer Composites in Automotive Applications, JOM: J. Min. Met. Mat. S.,58(1), 80-86 (2006)
  14. Ticoalu A., Aravinthan T. and Cardona F., A review of current development in natural fiber composites for structural and infrastructure Applications, Proceedings of Southern Region Engineering Conference(SREC), (Toowoomba, Australia), (2010)
  15. Suddell B.C. and Evans W.J., The Increasing Use and Application of Natural Fiber Composite Materials within the Automotive Industry, International Conference on Wood- fiber-Plastic Composites (ICWFPC) (Forest Products Society, Madison, WI), (2003)
  16. Maleque M.A., Belal F.Y. and Sapuan S.M., Mechanical properties study of pseudo-stem banana fiber reinforced epoxy composite, Arab. J. Sc. Eng., 32(2B), 359-364 (2007)
  17. Acharya S.K., Mishra P. and Mehar S.K., Effect of surface treatment on the mechanical properties of bagasse fiber reinforced polymer composite, Bioresources.,6, 3155-3165 (2011)
  18. Payae Y. and Lopattananon A., Adhesion of pineapple-leaf fiber to epoxy matrix: The role of surface treatments, Songklanakarin J. Sci. Technol., 31(2), 189-194 (2009)
  19. Roe P.J. and Ansell M.P., Jute-reinforced polyester composites, J. Mater. Sci., 20, 4015-4020 (1985)
  20. Devi. L.U., Bhagawan S.S. and Thomas S., Mechanical Properties of Pineapple Leaf Fiber-Reinforced Polyester Composites, J. Appl. Polym. Sci., 64(9), 1739-1748 (1997)
  21. Srinivasababu N., Murali M.R.K. and Suresh K.J., Tensile properties characterization of okra woven fiber reinforced polyester composites, Int. J. Eng. (IJE), 3(4), 403-412 (2009)
  22. Rout J., Misra M., Tripathy S.S., Nayak S.K. and Mohanty A.K., The influence of fiber surface modification on the mechanical properties of coir-polyester composites, J. Polym. Compos., 22(4), 468-476 (2001)
  23. Cao Y., Shibata S. and Fukumoto I.,Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments, Compos. Part A- Appl. S.,37(3), 423-429 (2006)
  24. Thielemans W., Can E., Morye S.S., and Wool R.P.,Novel Applications of Lignin in Composite Materials, J. Appl. Polym. Sci., 83, 323-331 (2002)
  25. Kalaprasad G., Joseph K. and Thomas S., Theoretical modeling of tensile properties of short sisal fiberreinforced low-density polyethylene composites, J. Mater. Sci., 32, 4261-4267 (1999)
  26. Facca A.G., Kortschot M.T. and Yan N.,Predicting the elastic modulus of natural fiber reinforced thermoplastics, Composite. Part A, 37, 1660-1671 (2006)
  27. Bing L., Yuhui H. and Guangmin C., Influence of Modified Wood Fibers on the Mechanical Properties of Wood Fiber-Reinforced Polyethylene, J. Appl. Polym. Sci., 66, 1561-1568 (1997)
  28. Joseph P.V., Kuruvilla J. and Thomas S., Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites, Compos. Sci. Technol., 59, 1625-1640 (1999)
  29. Okubo K., Fujii T. and Yamamoto Y., Development of bamboo-based polymer composites and their mechanical properties, J. Compos.Composite. Part A, 35, 377-383 (2004)
  30. Tajvidi M., Shekaraby M.M., Motiee N. and Najafi S.K.,Effect of Chemical Reagents on the Mechanical Properties of Natural Fiber Polypropylene Composites, J. Polym. Compos.,27(5), 563-569 (2006)
  31. Hujuri U., Chattopadhay S.K., Uppaluri R. and Ghoshal A.K., Effect of Maleic Anhydride Grafted Polypropylene on the Mechanical and Morphological Properties of Chemically Modified Short-Pineapple-Leaf-Fiber-Reinforced Polypropylene Composites, J. Appl. Polym. Sci., 107, 1507-1516 (2008)
  32. Chattopadhyay S.K., Khandal R.K., Uppaluri R. and Ghoshal A.K., Mechanical, Thermal, and Morphological Properties of Maleic Anhydride-g -Polypropylene Compatibilized and Chemically Modified Banana-FiberReinforced Polypropylene Composites, J. Appl. Polym. Sci., 117, 1731-1740 (2010)
  33. Bledzki A.K., Mamun A.A., Jaszkiewicz A. and Erdmann K., Polypropylene composites with enzyme modified abaca fiber, Compos. Sci. Technol., 70, 854-860 (2010)
  34. Chattopadhyay S.K., Khandal R.K., Uppaluri R. and Ghoshal A.K., Bamboo Fiber Reinforced Polypropylene Composites and Their Mechanical, Thermal, and Morphological Properties, J. Appl. Polym. Sci., 119, 1619-1626 (2011)
  35. Bledzki A.K., Reihmane S. and Gassan J., Thermoplastics Reinforced with Wood Fillers: A Literature Review, Polym. –Plast. Technol.,37(4), 451-468 (1998)
  36. Rowell R., Sanadi A.R., Caulfield D.F. and Jacobson R.E., Utilization of Natural Fibers in Plastic Composites: Problems and Opportunities in Lignocellulosic-plastics composites, A. L. Leao, F. X. Carvalho, E Frollini (eds)(USP and UNESP, Brazil), 23-51 (1997)
  37. Lopez J.L., Sain M. and Cooper P., Performance of Natural Fiber–Plastic Composites under Stress for Outdoor Applications: Effect of Moisture, Temperature, and Ultraviolet Light Exposur, J. Appl. Polym. Sci., 99, 2570-2577 (2006)
  38. Carvalho L.H., Chemical modification of fibers for plastics reinforcement in composites, inLignocellulosic-Plastics composites, A. L. Leao, F. X. Carvalho, E. Frollini (eds) (USP and UNESP, Brazil), 197-222 (1997)
  39. Marcovich N., Reboredo M. M. and Aranguren M. I., Chemical modification of lignocellulosic materials: The utilization of natural fibers as polymer reinforcement” inLignocellulosic-plastics composites, A. L. Leao, F. X. Carvalho, E. Frollini (eds) (USP and UNESP, Brazil) 223-240 (1997)
  40. Bledzki A.K., Mamun A.A., Lucka-Gabor M. and Gutowski V.S., The effects of acetylation on properties of flax fiber and its polypropylene composites, Express. Polym. Lett., 2(6), 413-422 (2008)
  41. Joseph K., Thomas S. and Pavithran C., Effect of chemical treatments on the tensile properties of short sisal fiber-LDPE composites, Polymer., 37(23), 5139-5149 (1996b)
  42. Liu X.Y. and Dai G.C., Surface modification and micromechanical properties of jute fiber mat reinforced polypropylene composites, Express. Polym. Lett., 1(5), 299-307 (2007)
  43. Mueller D. and Krobjilowski A., Improving the Impact Strength of natural fiber reinforced composites by specifically designed material and process parameters, INJ. Winter, 31-38 (2004)
  44. Corbiere-Nicollier T., Laban B.G., Lundquist L., Leterrier Y., Manson J.A.E. and Jolliet O., Lifecycle assessment of biofibers replacing glass fibers as reinforcement in plastics, Resour. Conserv. Recy., 33, 267-287 (2001)
  45. Al-Mosawi Ali I., Mechanical Properties of Plants -Synthetic Hybrid Fibers Composites, Res. J. Engineering Sci.,1(3), 22-25 (2012)
  46. Patcharaphun S. and Menning G., Prediction of tensile strength for sandwitch injection molded short-glass-fiber reinforced thermoplastics, JOM-J Min. Met. Mat. S.,17(2), 9-16 (2007)
  47. Xue Y., Veazie D.R., Glinsey C., Horstemeyer M.F. and Rowell R.M., Environmental effects on the mechanical and thermomechanical properties of aspen fiber-polypropylene composites, Composite. Part-B, 38, 152-158 (2007)
  48. Chollakup R., Tantatherdtam R., Ujjin S. and Sriroth K., Pineapple leaf fiber reinforced thermoplastic composites, J. Appl. Polym. Sci., 119, 1952-1960 (2011)
  49. Karnani R., Krishnan M. and Narayan R.N., Biofiber-reinforced polypropylene composites, Polym. Eng. Sci., 37(2), 476-483 (1997)
  50. Mohanty A.K., Misra M. and Hinrichsen G., Biofibers, biodegradable polymers and biocomposites: An overview, Macromol. Mater. Eng., 276/277(1), 1-24 (2000)
  51. Mohanty A.K., Misra M. and Drzal L.T., Sustainable bio-composites from renewable resources: Opportunity and challenges in the green materials world, J. Polym. Environ., 10, 19-26 (2002)
  52. Maguro A., Vegetable fibres in automotive interior components, Angew Makromol Chem,272, 99-107 (1999)
  53. Gross R.A. and Karla B., Biodegradable polymers for the environment, Science., 297, 1803-1807 (2002)
  54. Puglia D., Biagiotti J. and Kenny J. M., A review on natural fibre-based composites- part II: Application of natural reinforcements in composite materials for automotive industry. Journal of Natural Fibers (http://www.tandf.co.uk/journals/WJNF), 1, 23-65 (2005)
  55. Singh B., Verma A. and Gupta A., Studies on Adsorptive Interaction Between Natural Fiber and Coupling Agents, J. Appl. Polym. Sci.,70(9), 1847-1858 (1998)
  56. Elliott-Sink S., “Special Report: Cars Made of Plants” (12 April 2005), www.edmunds.com/advice/fueleconomy /articles/105341/article.html (downloaded 28 August 2006) (2006)
  57. Wotzel K., Wirth R. and Flake R., Life cycle studies on hemp fiber reinforced components and ABS for automotive parts, Angew. Makromol. Chem.,272(4673) , 121-127 (1999)
  58. Proemper E., New automotive interior parts from natural fiber materials, Proceedings, International AVK-TV Conference (Baden-Baden, Germany), (2004)
  59. Patel M., Bastioili C., Marini L. and Wurdinger E., Environmental assessment of bio-based polymers and natural fiber (Netherlands: Utrecht University), (2002)
  60. Joshi S.V., Drzal L.T., Mohanty A.K. and Arora S., Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites, Compos. part A-Appl. S.,35, 371-376 (2004)
  61. Bledzki A.K., Mamuna A.A. and Volk J., Physical, chemical and surface properties of wheat husk, rye husk and soft wood and their polypropylene composites Composite. Part A, 41, 480-488 (2010)