International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Assessment of heavy metal contamination of Amlakhadi: A tributary of Narmada River, Gujarat, India

Author Affiliations

  • 1Dept. of Environmental Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390020, Gujarat, India
  • 2Dept. of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390020, Gujarat, India

Int. Res. J. Environment Sci., Volume 9, Issue (3), Pages 15-27, July,22 (2020)

Abstract

Aquatic ecosystem throughout the globe is polluted by heavy metals arising from the anthropogenic sources. The study was aimed to investigate the degree of heavy metal pollution in surface sediments and wastewaters from Amlakhadi, India. Designated sampling stations were determined for the collection of wastewater samples and surface sediment samples from khadi and were analyzed for heavy metals using atomic absorption spectroscopy and X-ray fluorescence. The status of pollution in wastewaters and surface sediments of Amlakhadi was assessed using Concentration factor and Geo-accumulation Index. The data analysis indicates variation in heavy metal concentration within sampling stations attributed to the addition of sewage, municipal waste, and industrial effluent from various sources. The distributions of heavy metal in wastewaters were in the following sequence Fe> Zn> Mn> Cu> V> Ni> Co. While the distribution of heavy metals in surface sediments followed the sequence Fe> Si> Al> Ti> K> S> Mn> Co> Zn. The Contamination Factor (CF) showed the highest concentration level of Cu. The mean contamination factor (CF) for metals in the study area followed the order Al> Sr> Ti> Cr> Fe> Mn> V> Zn> Cu. The Geo-accumulation Index (Igeo) value for Cu and Zn was above 4 at most of the sampling stations which indicates high level of Pollution. The Geo-accumulation Index(Igeo) value for metals in the study area followed the order Al> Sr> Ti> Cr> Fe> Mn> V> Cu> Zn. The index of geo-accumulation of the sediment reveals overall pollution in the Amlakhadi area.

References

  1. Nazeer S., Hashmi M.Z., and Malik R.N. (2014)., Heavy metals distribution, risk assessment and water quality characterization by water quality index of the River Soan, Pakistan., Ecol Indic, 43, 262-270. doi: 10.1016/j.ecolind. 2014.03.010
  2. Yang X., Duan J., Wang L., Li W., Guan J., Beecham S., Mulcahy D. (2015)., Heavy metal pollution and health risk assessment in the Wei River in China., Env Monit Assess, 187(3), 111. doi: 10.1007/s10661-014-4202-y
  3. Sakai H., Kojima Y., and Saito K. (1986)., Distribution of heavy metals in water and sieved sediments in the Toyohira River., Water Res, 20, 559-567. doi: 10.1016/0043-1354 (86)90019-9
  4. Stamatis N., Ioannidou D., Christoforidis A., Koutrakis E. (2002)., Sediment pollution by heavy metals in the Strymonikos and Ierissos Gulfs, North Aegean Sea, Greece., Environ Monit Assess, 80(1), 33-49. doi:10.1023 /A:1020382011145
  5. Akcay H., Oguz A., and Karapire C. (2003)., Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments., Water Res, 37, 813-822. doi: 10.1016/S0043-1354(02)00392-5
  6. Loska K. and Wiechuła D. (2003)., Application of principal component analysis for the estimation of the source of heavy metal contamination in surface sediments from the Rybnik Reservoir., Chemosphere, 51(8), 723-733. doi:10.1016/S0045-6535(03)00187-5
  7. Woitke P., Wellmitz J., Helm D., Kube P., Lepom P., Litheraty P. (2003)., Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube., Chemosphere, 51(8), 633-642. doi:10.1016/S0045-6535(03)00217-0
  8. Singh K.P., Malik A., Sinha S., Singh V.K., Murthy R.C. (2005)., Estimation of the source of heavy metal contamination in sediments of Gomti River (India) using principal component analysis., Water Air Soil Pollut, 166(1-4), 321-341. doi:10.1007/s11270-005-5268-5
  9. Hua X., Dong D., Liu L., Gao M., Liang D. (2012)., Comparison of trace metal adsorption onto different solid materials and their chemical components in a natural aquatic environment., Appl Geochemistry, 27(5), 1005-1012. doi: 10.1016/j.apgeochem.2012.01.021
  10. Moore J.W. and Ramamoorthy S. (1984)., Heavy Metals in Natural Waters: Applied monitoring and impact assessment., Springer Verlag publications, pp 270.
  11. Khan B., Ullah H., Khan S., Aamir M., Khan A., Khan W. (2016)., Sources and Contamination of Heavy Metals in Sediments of Kabul River: The Role of Organic Matter in Metals Retention and Accumulation., Soil Sediment Contam, 25(8), 891-904. doi:10.1080/15320383.2016. 1224226
  12. European Commission. (2002)., Heavy Metals in Waste., DG ENV E3, Proj ENVE3/ETU/2000/0058, pp 1-83. doi:ENV.E.3/ETU/2000/0058
  13. Silva-Filho E.V., Santos I.R., Campos L.S., Schaefer CEGR., Albuquerque-Filho MR. (2004)., Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island., Mar Pollut Bull, 50(2), 185-194. doi:10.1016/j.marpolbul.2004. 10.009
  14. Kumar A. and Ramanathan AL. (2015)., Speciation of selected trace metals (Fe, Mn, Cu, and Zn) with depth in the sediments of Sundarban mangroves: India and Bangladesh., J Soils Sediments, 15(12), 2476-2486. doi: 10.1007/s11368-015-1257-5
  15. Hu Q., Zhu Y-G., Zhang S., Khan S., Aijun L. (2007)., Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation., J Hazard Mater, 152(2), 506-515. doi:10.1016/j.jhazmat.2007.07.014
  16. Shikazono N., Tatewaki K., Mohiuddin K.M., Nakano T., Zakir H.M. (2012)., Sources, spatial variation, and speciation of heavy metals in sediments of the Tamagawa River in Central Japan., Environ Geochem Health, 34(1), 13-26. doi:10.1007/s10653-011-9409-z
  17. Scheibye K., Weisser J., Borggaard OK., Larsen M.M., Holm P.E., Vammen K., Christensen J.H. (2014)., Sediment baseline study of levels and sources of polycyclic aromatic hydrocarbons and heavy metals in Lake Nicaragua., Chemosphere, 95, 556-565. doi: 10.1016/ j.chemosphere.2013.09.115
  18. Esmaeilzadeh M., Karbassi A., Moattar F. (2016)., Assessment of metal pollution in the Anzali Wetland sediments using chemical partitioning method and pollution indices., Acta Oceanol Sin, 35(10), 28-36. doi: 10.1007/s13131-016-0920-z
  19. Tuna AL., Yilmaz F., Demirak A., Ozdemir N. (2007)., Sources and distribution of trace metals in the saricay stream basin of southwestern turkey., Environ Monit Assess, 125(1-3), 47-57. doi:10.1007/s10661-006-9238-1
  20. Karbassi AR., Monavari SM., Nabi Bidhendi GR., Nouri J., Nematpour K. (2008)., Metal pollution assessment of sediment and water in the Shur River., Environ Monit Assess, 147(1-3), 107-116. doi:10.1007/s10661-007-0102-8
  21. Camusso M., Vigano L., Raffaella B. (1995)., Bioconcentration of trace metals in rainbow trout: A field study., Ecotoxicol Environ Saf, 31, 133-141.
  22. Krika A. and Krika F. (2018)., Assessment of Heavy Metals Pollution in Water and Sediments of Djendjen River, North-Eastern Algeria., Pollution, 4(3), 495-502. doi: 10.22059/poll.2018.249394.367
  23. Muller G. (1969)., Index of geo-accumulation in sediments of the Rhine River., Geo Journal, 2, 108-118. doi: 10.1055/s-2007-1023171
  24. Jain C.K., Gupta H., Chakrapani GJ. (2008)., Enrichment and fractionation of heavy metals in bed sediments of River Narmada, India., Environ Monit Assess, 141(1-3), 35-47. doi:10.1007/s10661-007-9876-y
  25. Alagarsamy R. and Zhang J. (2005)., Comparative studies on trace metal geochemistry in Indian and Chinese rivers., Curr Sci, 89(2), 299-309. doi: 10.1016/S0039-9140(01) 00330-7
  26. Central Water Commission (2015)., PMP Atlas for the Narmada, Tapi, Sabarmati, and Luni River Systems and Rivers of Saurashtra and Kutch Regions including Mahi., India Metrological Department, pp 344.
  27. APHA/AWWA/WEF. (2012)., Standard Methods for the Examination of Water and Wastewater., Part 1000. Stand Methods. doi:ISBN 9780875532356
  28. APHA (American Public Health Association) (2012)., Standard Methods for the Examination of Water and Wastewater., 22nd ed. American Public Health, Health Association, Washington, DC. doi:10.1080/1944701300 8687143
  29. Singh H., Pandey R., Singh SK., Shukla DN. (2017)., Assessment of heavy metal contamination in the sediment of the River Ghaghara, a major tributary of the River Ganga in Northern India., Appl Water Sci, 7(7), 4133-4149. doi:10.1007/s13201-017-0572-y
  30. Hakanson L. (1980)., An ecological risk index for aquatic pollution control.a sedimentological approach., Water Res, 14(8), 975-1001. doi:10.1016/0043-1354(80)90143-8
  31. Kumari M., Mudgal LK., Singh AK. (2013)., Comparative Studies of Physico-Chemical Parameters of Two Reservoirs of Narmada River, MP, India., Current World Environment, 8(3), 473-478.
  32. Gupta N., Pandey P., Hussain J. (2017)., Effect of physicochemical and biological parameters on the quality of river water of Narmada, Madhya Pradesh, India., Water Sci, 31(1), 11-23. doi:10.1016/j.wsj.2017.03.002
  33. Sharma S., Dixit S., Jain P., Shah KW., Vishwakarma R. (2008)., Statistical evaluation of hydrobiological parameters of Narmada River water at Hoshangabad City, India., Environ Monit Assess, 143(1-3), 195-202. doi: 10.1007/s10661-007-9968-8
  34. The Environment (Protection) Rules (1986)., Environment., pp1-10. doi:10.1017/S0033291714000531
  35. BIS (Bureau of Indian Standards) (2002)., Tolerance Limits of Selected Water Quality Parameters for Inland Surface Water Prescribed for Different uses by Bureau of Indian Standards in India., Bureau of Indian Standards, New Delhi.
  36. Sharma SK. and Subramanian V. (2010)., Source and distribution of trace metals and nutrients in Narmada and Tapti river basins, India., Environ Earth Sci, 61(7), 1337-1352. doi:10.1007/s12665-010-0452-3
  37. Islam MS., Ahmed MK., Raknuzzaman M., Habibullah -Al- Mamun M., Islam MK. (2015)., Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country., Ecol Indic, 48, 282-291. doi:10.1016/j.ecolind.2014.08.016
  38. Mohiuddin KM., Otomo K., Ogawa Y., Shikazono N. (2012)., Seasonal and spatial distribution of trace elements in the water and sediments of the Tsurumi River in Japan., Environ Monit Assess, 184(1), 265-279. doi:10.1007/s10661-011-1966-1
  39. Wang Z., Sun R., Zhang H., Chen L. (2014)., Analysis and assessment of heavy metal contamination in surface water and sediments: a case study from Luan River, Northern China., Front Environ Sci Eng, 9(2), 240-249. doi:10.1007/s11783-014-0646-0
  40. García-Pereira FJ., García Giménez R., Vigil de la Villa R., Procopio JR. (2014)., Heavy metal fractionation in sediments from the Jarama River (central Spain)., Environ Earth Sci, 73(5), 2385-2396. doi:10.1007/s12665-014-3587-9
  41. Zhang H., Jiang Y., Ding M., Xie Z. (2017)., Level, source identification, and risk analysis of heavy metal in surface sediments from river-lake ecosystems in the Poyang Lake, China., Environ Sci Pollut Res, 24(27), 21902-21916. doi:10.1007/s11356-017-9855-y
  42. Kazi TG., Jamali MK., Kazi GH., Arain MB., Afridi HI., Siddiqui A. (2005)., Evaluating the mobility of toxic metals in untreated industrial wastewater sludge using a BCR sequential extraction procedure and a leaching test., Anal Bioanal Chem, 383(2), 297-304. doi:10.1007/s00216-005-0004-y
  43. Mandal SK., Dutta SK., Pramanik S., Kole RK. (2019)., Assessment of river water quality for agricultural irrigation., Int J Environ Sci Technol, 16(1), 451-462. doi:10.1007/s13762-018-1657-3
  44. Subramanian V., Van 't Dack L., Van Grieken R. (1985)., Chemical composition of river sediments from the Indian sub-continent., Chem Geol, 48(1-4), 271-279. doi: 10.1016/0009-2541(85)90052-X
  45. Martin J. and Meybeck M. (1979)., Elemental mass balance of material carried by major World rivers., Mar Chem, 7, 173-206.
  46. Turekian KK. and Wedepohl KH. (1961)., Distribution of the elements in some major units of the earth's crust., Bull Geol Soc Am. 72, 175-192. doi: 10.1130/0016-7606(1961) 72[175:DOTEIS]2.0.CO;2
  47. Taylor SR. and McLennan S. (1985)., The Continental crust: its composition and evolution., An examination of the geochemical record preserved in sedimentary rocks. Oxford, Blackwell Sci, pp312. doi: 10.1017/S0016756800 032167