International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Effective technologies and lifestyle changes to reuse and control waste generation from natural and anthropogenic activities for sustainable future

Author Affiliations

  • 1Department of Biotechnology, Panjab University, Chandigarh, India
  • 2Department of Biotechnology, Panjab University, Chandigarh, India

Int. Res. J. Environment Sci., Volume 9, Issue (2), Pages 51-61, April,22 (2020)

Abstract

Environmental pollution has increased drastically in few decades. Various natural as well as anthropogenic activities have inevitably increased greenhouse gases leading to climate change and chronic disease development. The extreme globalisation, urbanisation and population rise together with natural disasters, improper resource management and vehicle exhaust had created a holocaust of environmental contaminants. To counter it, numerous short-term and long-term interventions are available by government organisations, NGOs and civil societies. In long term interventions, environmental biotechnology is the best method to preserve ecosystem from pollution in an eco-friendly manner. Some of its applications include bioremediation, biocomposting, bioenergy and biomarkers that can substitute the fossil fuel and reduce waste generation. Significant progress is being done in India's National Solar Mission to achieve renewable and clean energy sources thereby fulfilling Goal 7 of the SDGs. There are several sustainable working models available that can be modified according to the need of location. Furthermore, advance studies for biodiversity exploration, adequate and strict government policies implementation and change in lifestyle are required to reap the environmental pollution and move towards sustainable future.

References

  1. Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D. and Pozzer, A. (2015)., The contribution of outdoor air pollution sources to premature mortality on a global scale., Nature, 525(7569), 367-371.
  2. News (2019)., An estimated 12.6 million deaths each year are attributable to unhealthy environments., Available via http://www.who.int/mediacentre/news/ releases/2016/deaths-attributable-to-unhealthy-environments/en/ Accessed 11 Jun 2019
  3. Cichowicz, R., Wielgosinski, G. and Fetter, W. (2017)., Dispersion of atmospheric air pollution in summer and winter season., Environ. Monit. Assess., 189(12), 605.
  4. Report (2019)., Volcanic gases can be harmful to health, vegetation and infrastructure., Available https:// volcanoes.usgs.gov/vhp/ gas.html Accessed 11 Jun 2019
  5. News (2019)., Air Pollution., http:// www.who.int/mediacentre/news/releases/2016/air-pollution-estimates/en/ Accessed 11 Jun 2019
  6. News (2019)., Air Pollution Rises at 8%, 10 Countries With Most Polluted Air Revealed., Available via http://www.natureworldnews.com/articles/22113/20160516/air-pollution-rises-8-10-countries-polluted-revealed. htm Accessed 11 Jun 2019
  7. Metrics, I.H. (2013)., Evaluation: the global burden of disease: generating evidence, guiding policy., WA: IHME Seattle.
  8. Pal Singh, R., Ch, L., & Dhir, A. (2015)., Impacts of Stubble Burning on Ambient Air Quality of a Critically Polluted Areaâ Mandi-Gobindgarh., Journal of Pollution Effects & Control, 1-6.
  9. Report (2019)., The nuclear threat., Available via http://www.nti.org/learn/nuclear/ Accessed 11 Jun 2019
  10. Report (2019)., Natural Disasters & Pollution., Available via http://education.seattlepi.com/natural-disasters-pollution-4892.html Accessed 11 Jun 2019
  11. Report (2019)., Status of Trace and Toxic Metals in Indian Rivers., Available via http://www.cwc.nic.in /main/downloads/Trace%20&%20Toxic%20Report% 2025% 20June%202014.pdf Accessed 11 Jun 2019
  12. Schwarzenbach, R.P., Egli, T., Hofstetter, T.B., Von Gunten, U. and Wehrli, B. (2010)., Global water pollution and human health., Annu. Rev. Environ. Resour., 35, 109-136.
  13. Dept of Health and Family Welfare (2013)., State Wide Door to Door Campaign, Cancer Awareness and Symptom Based Early Detection., Government of Punjab; Chandigarh, India: 2013. Available via, http://pbhealth.gov.in/cancerawareness/CAC%20Report%201.1.pdf. Accessed 11 Jun 2019
  14. Singh, B.P. (2008)., Cancer deaths in agricultural heartland: a study in Malwa region of Indian Punjab., Available via http://www. gem-msc. org/Academic% 20Output/Academic% 20Output, 202006. Accessed 11 Jun 2019
  15. Blaurock-Busch, E., Friedle, A., Godfrey, M. and Schulte-Uebbing, C.E. (2010)., Metal exposure in the physically and mentally challenged children of Punjab, India., Maedica, 5(2), 102-110.
  16. Report (2019)., The Impact of Pesticides on Health: Preventing Intentional and Unintentional Deaths from Pesticide Poisoning., Available via http:// www.who.int/mental_health/prevention/suicide/en/Pesticides Health2.pdf Accessed 11 Jun 2019
  17. IPCA Report (2019)., Pesticide Regulations., Available via http://ipca.org.in/pesticide-regulations/Accessed 11 Jun 2019
  18. NEWS (2019)., Associated Chambers of Commerce and Industry of India. India among the top five countries in e-waste generation., Available via, http://www.assocham.org/newsdetail.php?id=6850.
  19. NEWS (2019)., E-Parisaraa Pvt. Ltd. Available via http://ewasteindia.com/Accessed 11 Jun 2019
  20. Electronic-waste-management. Available via http://www.greenworldinvestor.com/2011/05/10/electronic-waste-management-companies-in-india-list-of-unitse-waste-pollution-and-recycling-advantages/. Accessed 11 Jun 2019
  21. Mishra, D. and Rhee, Y.H. (2010)., Current research trends of microbiological leaching for metal recovery from industrial wastes., Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 2, 1289-1292.
  22. Report (2019)., Electronic waste., Available via http://www.who.int/ceh/risks/ewaste/en/ Accessed 11 Jun 2019
  23. Landrigan, P.J., Fuller, R., Acosta, N.J., Adeyi, O., Arnold, R., Balde, A.B., Bertollini, R., Bose-O, The Lancet Commission on pollution and health., The Lancet, 391(10119), 462-512.
  24. Wang, L.K., Ivanov, V., Tay, J.H. and Hung, Y.T. eds. (2010). Environ. Biotechnol., Vol. 10. Springer Science & Business Media.
  25. Sinha, R. K., Valani, D., Sinha, S., Singh, S., & Herat, S. (2009)., Bioremediation of contaminated sites: a low-cost nature's biotechnology for environmental clean up by versatile microbes, plants & earthworms., Solid waste management and environmental remediation, 978-1.
  26. Das, N., & Chandran, P. (2011)., Microbial degradation of petroleum hydrocarbon contaminants: an overview., Biotechnology research international.
  27. Article (2019)., National Mission for Clean Ganga. Namami Gange Programme., Available via http://nmcg.nic.in/Namami Ganga.aspx. Accessed 11 Jun 2019
  28. Rai, U.N., Tripathi, R.D., Singh, N.K., Upadhyay, A.K., Dwivedi, S., Shukla, M.K., Mallick, S., Singh, S.N. and Nautiyal, C.S. (2013)., Constructed wetland as an ecotechnological tool for pollution treatment for conservation of Ganga river., Biores. Technol., 148, 535-541.
  29. Lemak, S., Tchigvintsev, A., Petit, P., Flick, R., Singer, A.U., Brown, G., Evdokimova, E., Egorova, O., Gonzalez, C.F., Chernikova, T.N. and Yakimov, M.M. (2012)., Structure and activity of the cold-active and anion-activated carboxyl esterase OLEI01171 from the oil-degrading marine bacterium Oleispira antarctica., Biochem. J., 445(2), 193-203.
  30. Kostka, J.E., Prakash, O., Overholt, W.A., Green, S.J., Freyer, G., Canion, A., Delgardio, J., Norton, N., Hazen, T.C. and Huettel, M. (2011)., Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill., Appl. Environ. Microbiol., 77(22), 7962-7974.
  31. Biello, D. (2010)., Meet the microbes eating the gulf oil spill., A series of stories. Scientific American. August.
  32. Cao, Y., Chastain, R. A., Eloe, E. A., Nogi, Y., Kato, C., & Bartlett, D. H. (2014)., Novel psychropiezophilic Oceanospirillales species Profundimonas piezophila gen. nov., sp. nov., isolated from the deep-sea environment of the Puerto Rico Trench., Applied and Environmental Microbiology,
  33. Nayeem-Shah, M., Gajalakshmi, S. & Abbasi, S. A. (2015)., Direct, rapid and sustainable vermicomposting of the leaf litter of neem (Azadirachta indica)., Applied Biochemistry and Biotechnology, 175(2), 792-801.
  34. Hoornweg, D., Bhada-Tata, P., & Kennedy, C. (2013)., Environment: Waste production must peak this century., Nature News, 502(7473), 615.
  35. Repot (2019)., Waste Generation., Available via http://siteresources.worldbank.org/INTURBANDEVELOPMENT/Resources/336387-1334852610766/Chap3. pdf Accessed 11 Jun 2019
  36. Berkel, R.V., Fujita, T., Hashimoto, S. and Fujii, M. (2009)., Quantitative assessment of urban and industrial symbiosis in Kawasaki, Japan.,
  37. Ausubel, J.H. and Waggoner, P.E. (2008)., Dematerialization: Variety, caution, and persistence., Proceedings of the National Academy of Sciences, 105(35), 12774-12779.Book Chapter (2019).
  38. Sharholy, M., Ahmad, K., Mahmood, G. and Trivedi, R.C. (2008)., Municipal solid waste management in Indian cities-A review., Waste Manag., 28(2), 459-467.
  39. Joshi, R. and Ahmed, S. (2016)., Status and challenges of municipal solid waste management in India: A review., Cogent Environ. Sci., 2(1), 1139434.
  40. Report (2019)., Biocomposting methods., Available via http://www.fao.org/docrep/007/y5104e/y5104e06.htm Accessed 11 Jun 2019
  41. Article (2019)., Bioenergy association of Ukraine., WBA 2014. WBA Global Bioenergy Statistics 2014.Available via http://www.uabio.org/img/files/docs/ 140526-wba-gbs-2014.pdf Accessed 11 Jun 2019
  42. Meehan, T.D., Hurlbert, A.H. and Gratton, C. (2010)., Bird communities in future bioenergy landscapes of the Upper Midwest., Proceedings of the National Academy of Sciences, 107(43), 18533-18538.
  43. Contreras, L.M., Schelle, H., Sebrango, C.R. and Pereda, I. (2012)., Methane potential and biodegradability of rice straw, rice husk and rice residues from the drying process., Wat. Sci.Technol., 65(6), 1142-1149.
  44. Belal, E.B. (2013)., Bioethanol production from rice straw residues., Braz. J. Microbiol., 44(1), 225-234.
  45. Kaur, D., Bhardwaj, N.K. and Lohchab, R.K. (2017)., Prospects of rice straw as a raw material for paper making., Waste Manag., 60, 127-139.
  46. Bandaru, V., Izaurralde, R.C., Manowitz, D., Link, R., Zhang, X. and Post, W.M. (2013)., Soil carbon change and net energy associated with biofuel production on marginal lands: a regional modeling perspective., J. environ. Qual., 42(6), 1802-1814.
  47. Energy Statistics (2017)., Central Statistics Office Ministry of Statistics and Programme Implementation Government of India., Available via http://mospi.nic.in/sites/default/files/publication_reports/Energy_Statistics_2017.pdf Accessed 11 Jun 2019
  48. Report (2019)., Ministry of New and Renewable Energy (2014-2015)., Annual report. Government of India. Available via http://mnre.gov.in/mission-and-vision-2/publications /annual-report-2 Accessed 11 Jun 2019
  49. Ghosh, P.R., Fawcett, D., Sharma, S.B. and Poinern, G.E.J. (2016)., Progress towards sustainable utilisation and management of food wastes in the global economy., Int. J. Food Sci..
  50. Kumar, S., Smith, S.R., Fowler, G., Velis, C., Kumar, S.J., Arya, S., Kumar, R. and Cheeseman, C. (2017)., Challenges and opportunities associated with waste management in India., Royal Society Open Science, 4(3), 160764.
  51. Press Information Bureau (2019)., National Policy on Biofuels - 2018., Available via http://pib.nic.in/newsite/PrintRelease.aspx?relid=179313 Accessed 11 Jun 2019
  52. Press Information Bureau (2019)., MOVE., Available via http://pib.nic.in/newsite/PrintRelease.aspx?relid= 183324 Accessed 11 Jun 2019
  53. Information (2019)., Ministry of New and Renewable Energy., The national solar mission. Available via https://mnre.gov.in/file-manager/akshay-urja/june-2016 /11-15.pdf Accessed 11 Jun 2019
  54. Die Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) (2019)., Cricket stadium in Bangalore goes green, 400 kW solar plant installed on the stadium roof., Available via https://www.giz.de/en/worldwide/ 32077.html Accessed 11 Jun 2019
  55. Article (2019)., Key challenges in solar power development., Available via http://www.iea.org/ publications/freepublications/publication/India_study_ FINAL_WEB.pdf Accessed 11 Jun 2019
  56. Elekwachi, C.O., Andresen, J., Hodgman, T.C. (2014)., Global use of bioremediation technologies for decontamination of ecosystems., J. Bioremediat. Biodegrad., 5(4), 225.
  57. Press Information Bureau (2010)., Air Quality Forecasting System (SAFAR) and weather services dedicated to nation today for CWGs New Delhi 2010., Available via http://pib.nic.in/newsite/PrintRelease. aspx?relid=65912 Accessed 11 Jun 2019
  58. Central Pollution Control Board (2019)., Global environmental monitoring stations/ monitoring of Indian national aquatic resource., Available via http://cpcb.nic.in/water.php Accessed 11 Jun 2019
  59. Silva, C.O., Simões, T., Novais, S.C., Pimparel, I., Granada, L., Soares, A.M., Barata, C. and Lemos, M.F. (2017)., Fatty acid profile of the sea snail Gibbula umbilicalis as a biomarker for coastal metal pollution., Sci. Total Environ., 586, 542-550.
  60. Pereira, T.M., Mattar, L.P., Pereira, E.R., Merçon, J., da Silva, A.G. and Cruz, Z.M. (2017)., Effects of Tin on Enzyme Activity in Holothuria grisea (Echinodermata: Holothuroidea)., Bull. Environ. Contam. Toxicol., 98(5), 607-611.
  61. Augustynowicz, J., Łukowicz, K., Tokarz, K. and Płachno, B.J. (2015)., Potential for chromium (VI) bioremediation by the aquatic carnivorous plant Utricularia gibba L.(Lentibulariaceae)., Environ. Sci. Pollut. Res., 22(13), 9742-9748.
  62. Brooks, S.J., Farmen, E., Heier, L.S., Blanco-Rayón, E. and Izagirre, U. (2015)., Differences in copper bioaccumulation and biological responses in three Mytilus species., Aquat. Toxicol., 160, 1-12.
  63. Roy, S.U., Chattopadhyay, B., Datta, S. and Mukhopadhyay, S.K. (2011)., Metallothionein as a biomarker to assess the effects of pollution on Indian Major carp species from wastewater-fed fishponds of East Calcutta wetlands (a Ramsar Site)., Environ. Res. Eng. Managt., 58(4), 10-17.
  64. Desai, G., Chu, L., Guo, Y., Myneni, A.A. and Mu, L. (2017)., Biomarkers Used in Studying Air Pollution Exposure During Pregnancy and Perinatal Outcomes: A Review., Biomarkers, 22(6), 489-501.
  65. Undugoda, L.J.S., Kannangara, S. and Sirisena, D.M. (2016)., Genetic Basis of Naphthalene and Phenanthrene Degradation by Phyllosphere Bacterial Strains Alcaligenes faecalis and Alcaligenes sp. 11SO., J. Bioremed. Biodegrad., 7(2), 333.
  66. Sangthong, S., Suksabye, P. and Thiravetyan, P. (2016)., Air-borne xylene degradation by Bougainvillea Buttiana and the role of epiphytic bacteria in the degradation., Ecotoxicol. Environ. Saf., 126, 273-280.
  67. Vrijens, K., Bollati, V. and Nawrot, T.S. (2015)., Micro RNAs as potential signatures of environmental exposure or effect: a systematic review., Environ. Health Perspect., 123(5), 399-411.
  68. Sun, K., Liu, J., Gao, Y., Jin, L., Gu, Y. and Wang, W. (2014)., Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp., Sci. Rep., 4, 5462.
  69. Brucker, N., Moro, A.M., Charao, M.F., Durgante, J., Freitas, F., Baierle, M., Nascimento, S., Gauer, B., Bulcao, R.P., Bubols, G.B. and Ferrari, P.D. (2013)., Biomarkers of occupational exposure to air pollution, inflammation and oxidative damage in taxi drivers., Sci. Total Environ., 463, 884-893.
  70. Cao, X., Bi, R. and Song, Y. (2017)., Toxic responses of cytochrome P450 sub-enzyme activities to heavy metals exposure in soil and correlation with their bioaccumulation in Eisenia fetida., Ecotoxicol. Environ. Saf., 144, 158-165.
  71. Hou, J., Bai, L., Xie, Y., Liu, X. and Cui, B. (2015)., Biomarker discovery and gene expression responses in Lycopersicon esculentum root exposed to lead., J. Hazard. Mater., 299, 495-503.
  72. Malar, S., Sahi, S.V., Favas, P.J. and Venkatachalam, P. (2015)., Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)]., Environ. Sci. Pollut. Res., 22(6), 4597-4608.
  73. Global stewards (2019)., Green Eco Tips for Sustainable Living. Available via http://www.globalstewards.org/ ecotips.htm Accessed 11 Jun 2019
  74. Government web portal of Vietnam (2019)., Strategies to control pollution., Available via http:// www.chinhphu.vn/portal/page/portal/English/strategies/strategiesdetails?categoryId=30&articleId=10051159 Accessed 11 Jun 2019
  75. Nadgorska-Socha, A., Kandziora-Ciupa, M., Trzęsicki, M. and Barczyk, G. (2017)., Air pollution tolerance index and heavy metal bioaccumulation in selected plant species from urban biotopes., Chemosphere, 183, 471-482.
  76. Hindle, R.L. (2012)., A vertical garden: origins of the Vegetation-Bearing Architectonic Structure and System (1938)., J, Gard. Hist., 32(2), 99-110.
  77. Information (2019)., Mawlynnong village., Available via http://www.mawlynnong.com/About-Mawlynnong. php Accessed 11 Jun 2019
  78. Information (2019)., Sikkim organic mission., Available via http://www.sikkimorganicmission.gov.in/ towards-organic-sikkim/technology-development/ Accessed 11 Jun 2019
  79. Information (2019)., Water Sustainable Development Planning Asia Singapore Fact Sheet., Available via http://apfed-db.iges.or.jp/dtlbpp.php?no=23 Accessed 11 Jun 2019
  80. Report (2019). The clean-up of the River Thames. Available via http://www.telegraph.co.uk/earth/wildlife/ 8059970/The-clean-up-of-the-River-Thames.html Accessed 11 Jun 2019
  81. Story (2019)., The New River: An environmental success story., Available via http://www.utsandiego.com/news/2014/apr/23/new-river-pollution-wetlands-mexicali-environment/?
  82. Information (2019)., GIS and Natural Resource Management., Available via https:// www.gislounge.com/gis-and-natural-resource-management/Accessed 11 Jun 2019
  83. Human Development Report (2019)., Human Development is about putting people at the center., Available via http://hdr.undp.org/en/content/human-development-about-putting-people-center. Accessed 11 Jun 2019.