8th International Science Congress (ISC-2018).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Physico-chemical caracterization of PM2.5 and PM10 collected in dry savanna of Banizoumbou in Niger and wet savanna of Djougou in Benin

Author Affiliations

  • 1Université Abdou Moumouni, Faculté des Sciences et Techniques, Département de Physique, BP 10662, Niamey, Niger
  • 2Université Abdou Moumouni, Faculté des Sciences et Techniques, Département de Physique, BP 10662, Niamey, Niger
  • 3Université d'Abomey Calavi, Département de Physique, BP 526, Cotonou, Benin

Int. Res. J. Environment Sci., Volume 7, Issue (9), Pages 1-15, September,22 (2018)

Abstract

This study, carried out in the context of climate change (greenhouse effect, rainfall acidity, atmospheric pollution), is part of the INDAAF (International Network to study Deposition and Atmospheric chemistry in Africa) program. It allowed the chemical characterization of the soluble part of fine particles whose diameter is less than 2.5µm (PM2.5) and 10µm (PM10). These particles were collected in the dry savanna of Banizoumbou in Niger from 2005 to 2007 and in the wet savanna of Djougou in Benin from 2005 to 2009. Inorganic ions (Cl-, NO3-, SO42-, Na+, NH4+, K+, Mg2+, Ca2+) and organic (HCOO-, CH3COO-, C2H5COO-, C2O42-) were analyzed by ion chromatography. In Banizoumbou, high concentrations of Ca2+ (0.91µg.m-3), NO3- (0.49µg.m-3) and SO42- (0.36µg.m-3) were obtained in the dry season against 0.25, 0.65 and 0.18µg.m-3, respectively in the wet season. In Djougou, the most dominant ions are: Ca2+(0.59µg.m-3), NO3-(0.28µg.m-3) and SO42-(0.25 µg.m-3) in the dry season against 0.05, 0.15 and 0.16µg.m-3, respectively in the wet season. The NH4+ concentration is not negligible in the wet season: 0.25µg.m-3 in Banizoumbou and 0.10µg.m-3 in Djougou. At the same time, the organic ions are in the trace state. The results show that the atmosphere is more charged with particles in dry savanna than in wet savanna. Ca2+ and NH4+ have a strong capacity to neutralize rainwater in Banizoumbou during the wet season. In Djougou, only the NH4+ has significant effect as the concentration of SO42- increases due to phytoplankton activity. These findings partly explain the alkaline character of the rains at Banizoumbou and acid at Djougou. The neutralization process involves oxidation, heterogeneous nucleation, condensation and coagulation of fine particles.

References

  1. Galy-Lacaux C. and Modi A.I. (1998)., Precipitation chemistry in the Sahelian savanna of Niger, Africa., Journal of atmospheric chemistry, 30(3), 319-343.
  2. Hammoud Al. Ourabi (2002)., Etude expérimentale de gaz azotés, du dioxyde de soufre et de l, University of Toulouse, France, 1-241.
  3. Lacaux J.P., Cachier H. and Delmas R. (1993)., Biomass burning in Africa: An overview of its impact on atmospheric chemistry., in Fire in the Environment: The Ecological, Atmospheric and Climatic Importance of Vegetation Fires, edited by P.J. Crutzen and J.G. Goldammer. Environmental Science Research Report 13, John Wiley, New York., 159-191.
  4. Galy-Lacaux C., Laouali D., Descroix L., Gobron N. and Liousse C. (2009)., Long term precipitation chemistry and wet deposition in a remote dry savanna site in Africa (Niger)., Atmospheric Chemistry and Physics, 9(5), 1579-1595.
  5. Sigha-Nkamdjou L., Galy-Lacaux C., Pont V., Richard S., Sighomnou D. and Lacaux J.P. (2003)., Rainwater chemistry and wet deposition over the equatorial forested ecosystem of Zoétélé (Cameroon)., Journal of Atmospheric Chemistry, 46(2), 173-198.
  6. Mphepya J.N., Pienaar J.J., Galy-Lacaux C., Held G. and Turner C.R. (2004)., Precipitation chemistry in semi-arid areas of Southern Africa: a case study of a rural and an industrial site., Journal of Atmospheric Chemistry, 47(1), 1-24. (b) Mphepya J.N., Galy-Lacaux C., Lacaux J.P., Held G. and Pienaar J.J. (2006).
  7. Yoboué V., Galy-Lacaux C., Lacaux J.P. and Silué S. (2005)., Rainwater chemistry and wet deposition over the Wet Savanna Ecosystem of Lamto (Cote d, Journal of atmospheric chemistry, 52(2), 117-141.
  8. Laouali D., Galy-Lacaux C., Diop B., Delon C. Orange D., Lacaux J.P, Akpo A., Lavenu F., Gardrat E. and Castera P. (2012)., Long term monitoring of the chemical composition of precipitation and wet deposition fluxes over three Sahelian savannas., Atmos. Environ., 50, 314-327.
  9. Akpo A., Galy-Lacaux C., Laouali D., Delon C., Liousse C., Adon M., Gardrat E., Mariscal A. and Darakpa C. (2015)., Precipitation Chemistry and Wet Deposition in a remote Wet Savanna site in West Africa Djougou (Benin)., Atmos. Environ., 115, 110-123.
  10. Véronique Yoboué, Justine Kouamé, Marcellin Adon, Julien Bahino and Sékou Keita (2015)., Composition des aérosols collectés dans la savane sèche de Katibougou au Mali et dans la savane humide de Lamto en Côte d'Ivoire., J. Soc. Ouest-Afr. Chim., 039, 11-22.
  11. Laouali D., Moussa O. and Galy-Lacaux L. (2017)., Characterizing Aerosols Chemistry in the Great African Ecosystems., J. Mater. Environ. Sci., 8(5), 1644-1653.
  12. Wang G., Zhen L., Lü P., Jiang R. and Song W. (2013)., Effects of ozone and fine particulate matter (PM2. 5) on rat cardiac autonomic nervous system and systemic inflammation., Wei sheng yan jiu= Journal of hygiene research, 42(4), 554-560.
  13. Liousse C., Penner J.E., Chuang C., Walton J.J., Eddleman H. and Cachier H. (1996)., A global three-dimensional model study of carbonaceous aerosols., J. Geophys. Res., 105, 26871-26890.
  14. Haywood J.M., Pelon J., Formenti P., Bharmal N., Brooks M., Capes G., Chazette P., Chou C., Christopher S., Coe H., Cuesta J., Derimian Y., Desboeufs K., Greed G., Harrison M., Heese B., Highwood E.J., Johnson B., Mallet M., Marticorena B., Marsham J., Milton S., Myhre G., Osborne S.R., Parker D.J., Rajot J.L., Schulz M., Slingo A., Tanre D. and Tulet P. (2008)., Overview of the Dust and Biomass-burning Experiment and African Monsoon Multidisciplinary Analysis Special Observing Period-0., J. Geophys. Res., 113, D00C17, doi:10.1029/2008JD010077. https://hal.archive-ouvertes.fr/hal-00345814
  15. Rastogi N., Singh A., Singh D. and Sarin M.M. (2014)., Chemical characteristics of PM 2.5 at a source region of biomass burning emissions: Evidence for secondary aerosol formation., Environmental pollution, 184, 563-569. Htts://doi.org/10.1016/j.envpol.09.037
  16. Ramanathan V., Crutzen P.J., Kiehl J.T. and Rosenfeld D. (2001)., Aerosols, climate, andthe hydrological cycle., Science, 294, 2119-2124. http://dx.doi.org/10.1126 science.1064034.
  17. Jethva H., Satheesh S.K. and Srinivasan J. (2005)., Seasonal variability of aerosols over the Indo-Gangetic basin., J. Geophys. Res. Atmos., 110, D21, 204. http://dx.doi.org/ 101029/2005JD005938.
  18. Auffhammer M. Ramanathan V. and Vincent J.R. (2012)., Obervation based evidence that climate change has reduced Indian rice harvests., Clim. Change, 111, 411-424.
  19. Abderrahim H. (2006)., Apport du sondeur à laser (lidar)dans l'étude de la pollution par les aérosols., (Unpublished doctoral dissertation), Uuniversitéd'Oran, Oron, PP.178
  20. Lay Le M. and Galle S. (2005)., Variabilité interannuelle et intra-saisonnière des pluies aux échelles hydrologiques. La mousson ouest-africaine en climat soudanien / Seasonal cycle and interannualvariability ofrainfall at hydrological scales., The West African monsoon in a Sudanese climate. Hydrol. Sci. J., 50(3). https://doi.org/10. 1623/hysj.50.3.509.65029
  21. Gouvernement dela republique du benin (2010)., In the meantime, you can find official news in the Republic of Benin., http://www.gouv.bj/date d'accès 30/10/2010 : Appui-conseil: Cabinet IREDA B.P. 1219 Parakou: Plan de développement économique et social de la commune de Djougou
  22. Stewart D.J., Taylor C.M., Reeves C.E. and McQuaid J.B. (2008)., Biogenic nitrogen oxide emissions from soils: Impact on NOx and ozone over West Africa during AMMA (African Monsoon Multidisciplinary Analysis): Observational study., Atmos. Chem. Phys., 8(8), 2285- 2297.
  23. Singh A.K. and Mondal G.C. (2008)., Chemical caracterization of wet precipitation events and deposition of pollutants in coal miningregion, India., J. Atmos. Chem. 59, 1-23.
  24. Pierson W.R., Brachaczek W.W. and Mckee D.E. (1979)., Sulfate emissions from catalyst equipped automobiles on the highway., J. of Air Pollution Control Association, 29(3), 255-257.
  25. Truex T.J., Pierson W.R. and Mckee D.E. (1980)., Sulfate in diesel exhaust., Envir Sc.&Techn., 14(9), 1118-1121.
  26. Ohta S. and Okita T. (1990)., A chemical characterization of atmospheric aerosol in Sapporo. Atmospheric Environment., Part A. General Topics, 24(4), 815-822.
  27. Jonsson A.M., Hallquist M. and Ljungstrom E. (2008)., The effect of temperature and water on secondary organic aerosol from ozonolysis of limonene, Δ3-carene and α-pinene., Atmos. Chem. Phys., 8, 6541-6549.
  28. Von Hessberg C., Von Hessberg P., Poschl U., Bilde M., Nielsen O.J. and Moortgat G.K. (2009)., Temperature and humidity dependence of secondary organic aerosol yield from the ozonolysis of β-pinene.Atmos., Chem. Phys., 9, 3583-3599.
  29. Sullivan R.C., Guazzotti S.A., Sodeman D.A., Tang Y., Carmichael G.R. and Prather K.A. (2007)., Mineral dust is a sink for chlorine in the marine boundary layer., Atmospheric Environment, 41(34), 7166-7179.
  30. Lee Y.H., Chen K. and Adams P.J. (2009)., Development of a global model of mineral dust aerosol microphysics., Atmos. Chem. Phys., 9(7), 2441-2458. http://www.atmos-chem-phys.net/9/2441/2009/
  31. Ibaseta N. (2007)., Experimental study and modeling of ultrafine aerosol emission during nanostructure powders., (Doctoral dissertation, National Polytechnic Institute of Toulouse).
  32. Gu L., Baldocchi D.D., Wofsy S.C., Munger J.W., Michalsky J.J., Urbanski S.P. and Boden T.A. (2003)., Response of a deciduous forest to the mount Pinatubo eruption: enhanced photosynthesis., Science, 299(5615), 2035-2038.