6th International Young Scientist Congress (IYSC-2020) and Workshop on Intellectual Property Rights. 10th International Science Congress (ISC-2020).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

A review on phytoremediation of arsenic-contaminated soil

Author Affiliations

  • 1K.K. Shastri Government Science College, Department of Environmental Science, Gujarat University, Ahmedabad, India
  • 2K.K. Shastri Government Science College, Department of Environmental Science, Gujarat University, Ahmedabad, India
  • 3Department of Environmental Science, Gujarat University, Ahmedabad, India

Int. Res. J. Environment Sci., Volume 7, Issue (4), Pages 27-36, April,22 (2018)


Arsenic contamination of soil is drastically increased by extensive industrialization, mining, use of pesticides, smelting of non- ferrous metals which havebecome analarming concern for environment worldwide. The arsenic accumulation in the soil is a severe health concern, unlike organic compounds it is not degraded thus has to be removed from the soil. Most of the conventional remedial technologies are expensive and destroy the soil properties rendering it inferior for growing plants. Such issues draw attention worldwide to calls for environmentally friendly remediation technique for acure. Presently, phytoremediation being solar-driven effective and affordable solution to remove heavy metal contaminants from soil has gained popularity. The hyper-accumulator plants play a key role in reducing the amount of waste from going to landfills and while also utilizing both other organic and inorganic contaminants making the soil reusable. This review is a compilation of studies associated with effects of Arsenic accumulation, the efficacy of phytoremediation technology including mechanisms for uptake and factors affecting the process.


  1. Collins Y.E. and Stotzky G. (1989)., Factors affecting the toxicity of heavy metals to microbes., In: Beveridge, T.J. and Doyle, R.J. Metal ions and bacteria. Wiley, Toronto, Canada, 90, 31-90.
  2. Karimi N., Ghaderian S.M., Maroofi H. and Schat H. (2009)., Analysis of Arsenic in Soil and Vegetation of a Contaminated Area in Zarshuran, Iran., Int J Phytoremediation, 12(2), 159-173. https://doi.org/10.1080/ 15226510903213977
  3. Nriagu J.O. (2002)., Arsenic poisoning through the ages., Environmental Chemistry of Arsenic, Frankenberger, W.T. Ed. Marcel Dekker: New York, 1-26.
  4. Ng J.C. (2005)., Environmental contamination of arsenic and its toxicological impact on humans., Environ. Chem., 2(3), 146-160.
  5. Vahter M. (2002)., Mechanisms of arsenic biotransformation Toxicology., 181-182, 211-217.
  6. Baker A.J.M. (1981)., Accumulators and excluders—Strategies in the response of plants to heavy metals., J. Plant Nutr., 3(1-4), 643-654.
  7. Thomas D.J., Styblo M. and Lin S. (2001)., The cellular metabolism and systematictoxicity of arsenic., Toxicol. Appl. Pharmacol., 176(2), 127-144.
  8. Le X.C., Ma M., Cullen W.R., Aposhian H.V., Lu X. and Zheng B. (2000)., Determination of monomethylarsonous acid, a key methylation intermediate, in human urine., Environ. Health Perspect., 108, 1015-1018.
  9. Salt D.E., Blaylock M., Kumar N.P.B.A., Dushenkov V., Ensley B.D., Chet I. and Raskin I. (1995)., Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants., Biotechnol., 13, 468-474.
  10. Styblo M. and Thomas D.J. (1995)., In vitro inhibition of Glutathione reductase by arsenotriglutathione., Biochem. Pharmacol., 49(7), 971-977.
  11. Del Rezo L., Garcia Vargas G., Vargas H., Albores A., Gonsebatt M., Montero R., Ostrosky-Wegman P., Kelsh M. and Cebrian M. (1997)., Altered profile of urinary arsenic metabolites in adults with chronic arsenicism: A pilot study., Arch. Toxicol., 71, 211-217.
  12. Vahter M. (1999)., Methylation of inorganic arsenic in different mammalian species and population groups., Sci. Prog., 82, 69-88.
  13. Concha G., Nermell B. and Vahter M.V. (1998)., Metabolism of inorganic arsenic in children with chronic high arsenic exposure in northern Argentina., Environmental Health Perspectives, 106(6), 355.
  14. Chowdhury U.K., Rahman M.M., Sengupta M.K., Lodh D., Chandra C.R. and Roy S. (2003)., Pattern of excretion of arsenic compound in urine of children compared to adult’s form an arsenic-exposed area in Bangladesh., J Environ. Sci. Hlth., 38, 87-113.
  15. Mahimairaja S., Bolan N.S., Adriano D.C. and Robinson B. (2005)., Arsenic contamination and its risk management in complex environmental settings., Adv. Agron., 86, 1-82.
  16. Danh L.T., Truong P., Mammucari R. and Foster N. (2014)., A Critical Review of the Arsenic Uptake Mechanisms and Phytoremediation Potential of Pteris vittata., Int J Phytoremediation, 16(5), 429-453. https://doi.org/10.1080/15226514.2013.798613
  17. Siripitayakunkit U., Lue S. and Choprapawan C. (2001)., Possible effects of arsenic on visual perception and visual-motor integration of children in Thailand., Arsenic Exposure and Health Effects IV, 4, 165-172.
  18. Maloney M.E. (1996)., Arsenic in dermatology., Dermatologic surgery, 22(3), 301-304.
  19. Arsenic W.H.O. (1981)., Environmental Health Criteria 18., Geneva: World Health Organization, 82.
  20. Goddard M.J., Tanhehco J.L. and Dau P.C. (1992)., Chronic arsenic poisoning masquerading as Landry-Guillain-Barre syndrome., Electromyog. Clin. Neurophysiol., 32, 419-423.
  21. Francesconi K.A. and Kuehnelt D. (2002)., Arsenic compounds in the environment., In Environmental Chemistry of Arsenic, Frankenberger, W.T., Ed. Marcel Dekker: New York, 51-94.
  22. Garbisu C. and Alkorta I. (2003)., Basic concepts on heavy metal soil bioremediation., Eur. J. Min. Proc. and Environ. Protect., 3, 58-66.
  23. Ghosh M. and Singh S.P. (2005)., A review on phytoremediation of heavy metals and utilization of it’s by products., Asian J Energy Environ, 6(4), 18.
  24. Last M.M. (2002)., Phytoextraction of toxic metals: A review of biological mechanisms., J Environ Qual, 31, 109-120.
  25. Meagher R.B. (2000)., Phytoremediation of toxic elemental and organic pollutants., Curr.Opin.Plant Biol., 3, 153-162.
  26. Baker A.J.M., McGrath S.P., Sidoli C.M.D. and Reeves R.D. (1994)., The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants., Resour. Conser. Recycle., 11, 41-49.
  27. Ciurli A., Lenzi L., Alpi A. and Pardossi A. (2014)., Arsenic Uptake and Translocation by Plants in Pot and Field Experiments., Int J phytoremidiation, 16(7-8), 804-823. https://doi.org/10.1080/15226514.2013.856850
  28. Mokgalaka-Matlala N.S., Flores-Tavizón E., Castillo-Michel H., Peralta-Videa J.R. and Gardea-Torresdey J.L. (2008)., Toxicity of Arsenic (III) and (V) on Plant Growth, Element Uptake and Total Amylolytic Activity of Mesquite (Prosopis Juliflora x P. Velutina)., Int J phytoremidiation, 10(1), 47-60. https://doi.org/10.1080/ 15226510701827069
  29. Tu C., & Ma L.Q. (2002)., Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake., Journal of Environmental Quality, 31(2), 641-647.
  30. Gao Y. and Zhu L. (2004)., Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils., Chemosphere, 55(9), 1169-1178.
  31. Batty L.C., Auladell M. and Sadler J.P. (2010)., The impacts of metalliferous drainage on aquatic communities in streams and rivers., Ecology of Industrial Pollution., 70-82.
  32. French C.J., Dickinson N.M. and Putwain P.D. (2006)., Woody biomass phytoremediation of contaminated brownfield land., Environ. Pollut., 141(3), 387-395.
  33. Liu H., Chen L.P., Ai Y.W., Yang X., Yu Y.H., Zuo Y.B., and Fu G.Y. (2009)., Heavy metal contamination in soil alongside mountain railway in Sichuan., China. Environ. Monit. Assess., 152, 25-33.
  34. Bolan N., Kunhikrishnan A., Thangarajan R., Kumpiene J., Park J., Makino T., Kriham M.B. and Scheckel K. (2014)., Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize?., J Hazard Mater., 266, 141-166.
  35. Garbisu C. and Alkorta I. (2001)., Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment., Bioresource Technol., 77, 229-236.
  36. Oremland R.S. and Stolz J.F. (2003)., The ecology of arsenic., Science, 300, 939-944.
  37. MacKenzie D.M. (1994)., Environmental risk analysis. In: Biotechnology Risk Assessment (Levin, M., Grimm, C., and Angle, J.S., Eds.)., University of Maryland Press, 15-25.
  38. Rai P.K. (2008)., Heavy Metal Pollution in Aquatic Ecosystems and its Phytoremediation using Wetland Plants: An ecosustainable approach., Int J phytoremidiation, 10(2), 133-160. https://doi.org/10.1080/15226510801913918
  39. Cunningham S. April 19-22 (1995)., In Proceedings/Abstracts of the Fourteenth Annual Symposium, Current Topics in Plant Biochemistry, – Physiology, and Molecular Biology Columbia., 47-48.
  40. Raskin I., Kumar P.B.A.N., Dushenkov S. and Salt D. (1994)., Bioconcentration of heavy metals by plants., Cur Opp Biotech, 5(3), 285-290.
  41. Cunningham S.D. and Ow D.W. (1996)., Promises and prospects of phytoremediation., Plant Physiol., 110(3), 715-719.
  42. Gabbrielli P., Pandolfini T., Vergnano O. and Palandri M. R. (1990)., Comparison of two serpentine species with different nickel tolerance strategies., Plant and Soil, 122(2), 271-277.
  43. Homer F.A., Morrison R.S., Brooks R.R., Clemens J. and Reeves R.D. (1991)., Comparative studies of nickel, cobalt, and copper uptake by some nickel hyperaccumulators of the genus Alyssum., Plant and Soil, 138(2), 195-205.
  44. Henry H.F., Burken J.G., Maier R.M., Newman L.A., Rock S., Schnoor J.L. and Suk W.A. (2013)., Phytotechnologies – Preventing Exposures, Improving Public Health., Int J phytoremidiation, 15(9), 889-899. https://doi.org/10.1080/15226514.2012.760521
  45. Brown S.L., Chaney R.L., Angle J.S. and Baker A.J. (1995)., Zinc and cadmium uptake by hyperaccumulator Thlaspicaerulescensgrown in nutrient solution., Soil Sci. Soc. Am. J., 59, 125-133.
  46. Krämer U., Cotter-Howells J.D., Charnock J.M., Baker A. J. and Smith J.A.C. (1996)., Free histidine as a metal chelator in plants that accumulate nickel., Nature, 379(6566), 635-638.
  47. Shen Z.G., Zhao F.J. and McGrath S.P. (1997)., Uptake and transport of zinc in the hyperaccumulator Thlaspicaerulescens and the non-hyperaccumulator Thlaspiochroleucum., Plant Cell Environ., 20, 898-906.
  48. Zhao F.J., Lombi E., Breedon T. and McGrath S.P. (2000)., Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri., Plant Cell Environ., 23(5), 507-514.
  49. Garbisu C., Allica J.H., Barrutia O., Alkorta I. and Becerril J.M. (2002)., Phytoremediation: a technology using green plants to remove contaminants from polluted areas., Reviews on environmental health, 17(3), 173-188.
  50. Pulford I.D. and Watson C. (2003)., Phytoremediation of heavy metal-contaminated land by trees – a review., Environ. Int., 29(4), 529-540.
  51. Salido A.L., Hasty K.L., Lim J.M. and Butcher D.J. (2003)., Phytoremediation of Arsenic and Lead in Contaminated Soil Using Chinese Brake Ferns ( Pterisvittata ) and Indian Mustard (Brassica juncea)., Int J phytoremidiation, 5(2), 89-103. https://doi.org/ 10.1080/713610173
  52. Trapp S. and Karlson U. (2001)., Aspects of phytoremediation of organic compounds., J. Soils Sed., 1, 37-43.
  53. Wong M.H. (2003)., Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils., Chemosphere, 50(6), 775-780.
  54. Mulligan C.N., Yong R.N. and Gibbs B.F. (2001)., Remediation technologies for metal-contaminated soils and groundwater: An evaluation., Eng. Geol., 60, 193-207.
  55. Ma L.Q., Komar K.M., Tu C., Zhang W., Cai Y. and Kennelley E.D. (2001)., A fern that hyperaccumulates arsenic., Nature, 409, 579.
  56. Wang X., Ma L.Q., Rathinasabapathi B., Liu Y. and Zeng G. (2010)., Uptake and translocation of arsenite and arsenate by Pterisvittata L.: Effects of silicon, boron and mercury., Environ Exp Bot, 68(2), 222-229.
  57. Mathews S., Ma L.Q., Rathinasabapathi B., Natarajan S. and Saha U.K. (2010)., Arsenic transformation in the growth media and biomass of hyperaccumulator Pteris vittata L., BioresourTechnol, 101(21), 8024-8030.
  58. Wang X., Ma L.Q., Rathinasabapathi B., Cai Y., Liu Y.G. and Zeng G.M. (2011)., Mechanisms of efficient arsenite uptake by arsenic hyperaccumulator Pteris vittata., Environ SciTechnol, 45(22), 9719-9725.
  59. Zheng S.Q., Cooper J.F. and Fontanel P. (1993)., Movement of pendimethalin in the soil of the south of France., Bull. Environ. Contam. Toxicol., 50(4), 492-498.
  60. Kertulis G.M., Ma L.Q., MacDonald G.E., Chen R., Winefordner J.D. and Cai Y. (2005)., Arsenic speciation and transport in Pteris vittata L. and the effects on phosphorus in the xylem sap., Environ Exp Bot, 54(3), 239-247.
  61. Singh N. and Ma L.Q. (2006)., Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L., Environ Pollut, 141(2), 238-246.
  62. Tu S., Ma L.Q., Fayiga A.O. and Zillioux E.J. (2004)., Phytoremediation of Arsenic-Contaminated Groundwater by the Arsenic Hyperaccumulating Fern Pterisvittata L., International Int J phytoremidiation, 6(1), 35-47. https://doi.org/10.1080/16226510490439972
  63. Pickering I.J., Gumaelius L., Harris H.H., Prince R.C., Hirsch G., Banks J.A., Salt D.E. and George G.N. (2006)., Localizing the biochemical transformations of arsenate in a hyperaccumulating fern., Environ SciTechnol, 40(16), 5010-5014.
  64. Chen T., Wei C., Huang Z., Huang Q., Lu Q. and Fan Z. (2002)., Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation., Chinese Science Bulletin, 47(11), 902-905.
  65. Lombi E., Zhao F.J., Fuhrmann M., Ma L.Q. and McGrath S.P. (2002)., Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata., New Phytologist, 156(2), 195-203.
  66. Liao X.Y., Chen T.B., Lei M., Huang Z.C., Xiao X.Y. and An Z.Z. (2004)., Root distributions and elemental accumulations of Chinese brake (Pterisvittata L.) from As-contaminated soils., Plant Soil, 261(1-2), 109-116.
  67. Daus B., Wennrich R., Morgenstern P., Weiß H., Palmieri H.E.L., Nalini H.A., Leonel L.V., Monteiro R.P.G. and Moreira R.M. (2005)., Arsenic speciation in plant samples from the Iron Quadrangle, Minas Gerais, Brazil., Microchim Acta, 151, 175-180.
  68. Elkhatib E.A., Bennett O.L. and Wright R.J. (1984)., Arsenite Sorption and Desorption in Soils 1., Soil Science Society of America Journal, 48(5), 1025-1030.
  69. Liu Y., Wang H.B., Wong M.H. and Ye Z.H. (2009)., The role of arsenate reductase and superoxide dismutase in As accumulation in four Pteris species., Environment international, 35(3), 491-495.
  70. Kertulis-Tartar G.M., Ma L.Q., Tu C. and Chirenje T. (2006)., Phytoremediation of an Arsenic-Contaminated Site Using Pterisvittata L.: A Two-Year Study., Int J phytoremidiation, 8(4), 311-322. https://doi.org/10.1080/15226510600992873
  71. Baker A.J.M., Reeves R.D. and McGrath SP. (1991)., In situ decontamination of heavy metal polluted oils using crops of heavy metal accumulating plants—a feasibility study., Boston (MA): Butterworth-Heinemann, 600-605.
  72. Salt D.E., Smith R.D. and Raskin I. (1998)., Phytoremediation., Annual review of plant biology, 49(1), 643-668.
  73. Ebbs S., Hatfield S., Nagarajan V. and Blaylock M. (2009)., A Comparison of the Dietary Arsenic Exposures from Ingestion of Contaminated Soil and Hyperaccumulating Pteris Ferns Used in a Residential Phytoremediation Project., Int J phytoremidiation, 12(1), 121-132. https://doi.org/10.1080/15226510902861784
  74. Visoottiviseth P., Francesconi K. and Sridokchan W. (2002)., The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land., Environ. Pollut., 118(3), 453-461.
  75. Karimi N., Ghaderian S.M., Raab A., Feldmann J. and Meharg A.A. (2009)., An arsenic accumulating, hyper tolerant Brassica, Isatis capadocica., New Phytol., 184, 41-47.
  76. Siciliano S.D., Goldie H. and Germida J.J. (1998)., Enzymatic activity in root exudates of Dahurian wild rye (Elymusdauricus) that degrades 2-chlorobenzoic acid., J. Agric. Food Chem., 46, 5-7.
  77. Anonymous (1990)., NEA dumps on science-art Science., 250, 1515.
  78. Vögeli-Lange R. and Wagner G.J. (1990)., Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves: implication of a transport function for cadmium-binding peptides., Plant physiology, 92(4), 1086-1093.
  79. Ortiz D.F., Ruscitti T., McCue K.F. and Ow D.W. (1995)., Transport of metal binding peptides by HMTl, a fission yeast ABC-type vacuolar membrane protein., J Biol Chem., 270, 4721-4728.
  80. Mench M., Lepp N., Bert V., Schwitzguébel J.P., Gawronski S.W., Schröder P. and Vangronsveld J. (2010)., Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859., Journal of Soils and Sediments, 10(6), 1039-1070.
  81. Van Ginneken L., Meers E., Guisson R., Ruttens A., Elst K., Tack F.M. and Dejonghe W. (2007)., Phytoremediation for heavy metal‐contaminated soils combined with bioenergy production., Journal of Environmental Engineering and Landscape Management, 15(4), 227-236.
  82. Sas-Nowosielska A., Kucharski R., Pogrzeba M., Krzyzak J., Kuperberg J.M. and Japenga J. (2008)., Phytoremediation technologies used to reduce the environmental threat posed by metal contaminated soils: theory and reality., In: Barnes I, Kharytonov MM, editors. Simulation and assessment of chemical processes in a multiphase environment, NATO SPSSeries C—Environ Security, 285-297.
  83. Lievens C., Yperman J., Vangronsveld J. and Carleer R. (2008)., Study of the potential valorization of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: part I. Influence of temperature, biomass species and solid heat carrier on the behavior of heavy metals., Fuel, 87(10-11), 1894-1905.
  84. Vangronsveld J., Diels L., Spelman N., Clijsters H., Adriaensens E. and Carleer R. (2008)., Physicochemical and biological evaluation of the efficacy of in situ metal inactivation in contaminated soils by soil additives and phytoextraction., Int J phytoremidiation, 10, 390-414.
  85. Yan X.L., Chen T.B., Liao X.Y., Huang Z.C., Pan J.R., Hu T.D. and Xie H. (2008)., Arsenic transformation and volatilization during incineration of the hyperaccumulator Pteris vittata L., Environmental science & technology, 42(5), 1479-1484.
  86. Carrier M., Loppinet-Serani A., Absalon C., Marias F., Aymonier C. and Mench M. (2011)., Conversion of fern (Pteris vittata L.) biomass from a phytoremediation trial in sub-and supercritical water conditions., biomass and bioenergy, 35(2), 872-883.
  87. Cao X., Ma L., Shiralipour A. and Harris W. (2010)., Biomass reduction and arsenic transformation during composting of arsenic-rich hyperaccumulator Pterisvittata L., Environ SciPollut Res., 17(3), 586-594.
  88. Ernst W.H.O. (1996)., Bioavailability of heavy metals and decontamination of soil by plants., Appl. Geochem., 11(1-2), 163-167.
  89. Kumar D., Singh V.P., Tripathi D.K., Prasad S.M. and Chauhan D.K. (2015)., Effect of Arsenic on Growth, Arsenic Uptake, Distribution of Nutrient Elements and Thiols in Seedlings of Wrightia arborea (Dennst.) Mabb., Int J phytoremidiation, 17(2), 128-134. https://doi.org/10.1080/15226514.2013.862205
  90. Marschner H. (1995)., Mineral Nutrition of Higher Plants., 2nd ed. New York, Academic.
  91. Adriano D.C. (2001)., Arsenic., In Trace elements in terrestrial environments, Springer, New York, NY, 219-261.
  92. Fendorf S., McDernlott T.R. and Inskeep W.P. (2001)., Arsenic (V)/(III) Cycling in Soils and Natural Waters: Chemical and Microhiological Processes., In Environmental Chemistry of Arsenic, CRC Press, 203-236.
  93. Madejón P., Ciadamidaro L., Marañón T. and Murillo J.M. (2013)., Long-Term Biomonitoring of Soil Contamination Using Poplar Trees: Accumulation of Trace Elements in Leaves and Fruits., International Journal of Phytoremediation, 15(6), 602-614. https://doi.org/10.1080/15226514.2012.723062
  94. Smith E., Naidu R. and Alston A.M. (2002)., Chemistry of arsenic in soils: II. Effect of phosphorus, sodium and calcium on arsenic sorption., J. Environ. Qual., 31(2), 557-563.
  95. Wang H.B., Ye Z.H., Shu W.S., Li W.C., Wong M.H. and Lan C.Y. (2006)., Arsenic Uptake and Accumulation in Fern Species Growing at Arsenic-Contaminated Sites of Southern China: Field Surveys., Int J phytoremidiation, 8(1), 1-11. https://doi.org/10.1080/16226510500214517
  96. Wei C., Zheng H. and Yu J. (2012)., Arsenic in the rhizosphere soil solution of ferns., International journal of phytoremediation, 14(10), 950-965. https://doi.org/10.1080/15226514.2011.636405
  97. Jomjun N., Siripen T., Maliwan S., Jintapat N., Prasak T., Somporn C. and Petch P. (2010)., Phytoremediation of Arsenic in Submerged Soil by Wetland Plants., Int J phytoremidiation, 13(1), 35-46. https://doi.org/10.1080/15226511003671320
  98. Jones D.L. (1987)., Encyclopedia of Ferns., British Museum (Natural History), London.
  99. Deuel L.E. and Swoboda A.R. (1972)., Arsenic Solubility in a Reduced Environment 1., Soil Science Society of America Journal, 36(2), 276-278.
  100. Masscheleyn P.H., Delaune R.D. and Patrick Jr W.H. (1991)., Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil., Environmental science & technology, 25(8), 1414-1419.
  101. Mandal A., Purakayastha T.J., Patra A.K. and Sanyal S.K. (2012)., Phytoremediation of arsenic contaminated soil by pterisvittata l. I. Influence of phosphatic fertilizers and repeated harvests., Int J phytoremidiation, 14(10), 978-995. https://doi.org/10.1080/15226514.2011.649433
  102. Marin A.R., Masscheleyn P.H. and Patrick W.H. (1993)., Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice., Plant and Soil, 152(2), 245-253.
  103. McGeehan S.L. and Naylor D.V. (1994)., Sorption and redox transformation of arsenite and arsenate in two flooded soils., Soil Science Society of America Journal, 58(2), 337-342.
  104. Anderson L.L., Walsh M., Roy A., Bianchetti C.M. and Merchan G. (2010)., The Potential of Thelypterispalustris and Asparagus sprengeri in Phytoremediation of Arsenic Contamination., Int J phytoremidiation, 13(2), 177-184. https://doi.org/10.1080/15226511003671346
  105. Woolson E.A., Axley J.H. and Kearney P.C. (1973)., The Chemistry and Phytotoxicity of Arsenic in Soils: II. Effects of Time and Phosphorus., Soil Science Society of America Journal, 37(2), 254-259.
  106. Peryea F.J. and Kammereck R. (1995)., Phosphate-enhanced movement of arsenic out of lead arsenate-contaminated topsoil and through uncontaminated subsoil., Water Air Soil Pollut., 93, 243-254.
  107. Carrow R.N., Rieke P.E. and Ellis B.G. (1975)., Growth of turf grasses as affected by soil phosphorus and arsenic., Soil Sci. Soc. Am. Proc., 39(6), 1121-1124.
  108. Peryea F.J. (1991)., Phosphate-induced release of arsenic from soils contaminated with lead arsenate., Soil Science Society of America Journal, 55(5), 1301-1306.
  109. Creger T.L. and Peryea F.J. (1994)., Phosphate fertilizer enhances arsenic uptake by apricot liners grown in lead-arsenate-enriched soil., HortScience, 29(2), 88-92.
  110. Jiang Q.Q. and Singh B.R. (1994)., Effect of different forms and sources of arsenic on crop yield and arsenic concentration., Water Air Soil Pollution, 74(3-4), 321-343.
  111. Small H.G. Jr and McCants C.B. (1962)., Influence of arsenic applied to the growth media on the arsenic content of flue-cured tobacco., Agron. J., 54(2), 129-133.
  112. Brooks Robert R. (1998)., Plants that hyperaccumulate heavy metals, their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining.,
  113. Podder M.S. and Majumder C.B. (2017)., Toxicity and bioremediation of As (III) and As (V) in the green microalgae Botryococcusbraunii : A laboratory study., Int J phytoremidiation, 19(2), 157-173. https://doi.org/10.1080/15226514.2016.1207601
  114. Kopp R.F., Smart L.B., Maynard C.A., Isebrands J.G., Tuskan G.A. and Abrahamson L.P. (2001)., The development of improved willow clones for eastern North America., The forestry chronicle, 77(2), 287-292.
  115. Berken A., Mulholland M., LeDuc D.L. and Terry N. (2002)., Genetic engineering of plants to enhance selenium phytoremediation., Crit. Rev. Plant Sci., 21(6), 567-582.
  116. Srivastava S., Suprasanna P. and D’Souza S.F. (2012)., Mechanisms of Arsenic Tolerance and Detoxification in Plants and their Application in Transgenic Technology: A Critical Appraisal., Int J phytoremidiation, 14(5), 506-517. https://doi.org/10.1080/15226514.2011.604690
  117. Castelo-Grande T. and Barbosa D. (2003)., Soil decontamination by supercritical extraction Electronic., J. Environ. Agric. Food Chem., 2.
  118. Scullion J. (2006)., An Overview of The Organic Contaminants., Naturwiss, 93, 51.
  119. Miller R.R. (1996)., Technology Overview Report: Phytoremediation., Ground-Water Remediation Technologies Analysis Center, Pittsburgh PA.