International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Cell-to-Cell signal system in Escherichia coli Drug Resistance- a review

Author Affiliations

  • 1Department of Microbiology, Federal University of Technology, Minna, Nigeria
  • 2Department of Microbiology, Federal University of Technology, Minna, Nigeria
  • 3Department of Biological Sciences, Niger State Polytechnic, Zungeru, Nigeria
  • 4Department of Microbiology, Federal University of Technology, Minna, Nigeria
  • 5Department of Biological Sciences, Federal Polytechnic, Bida, Nigeria
  • 6Department of Microbiology, Federal University of Technology, Minna, Nigeria

Int. Res. J. Environment Sci., Volume 6, Issue (8), Pages 51-59, August,22 (2017)

Abstract

The term drug resistance refers to the ability of microorganisms to resist a drug that once stalled or killed them. Drug resistance in Escherichia coli may occur via production and elaboration of beta-lactamases, impermeability by simple closure of porin channels or lipopolysaccharide expression and removal of the anti-microbial compounds from the bacterial cell through specific and/or general efflux pumps. Drug resistance may be innate or adaptive. Cell-to-cell signal system (quorum sensing, QS) is an adaptive type of drug resistance, which depends on secreted signal molecules, to initiate response synchronized across bacterial population. The signaling molecules is similar to hormones present in higher animals. Mechanisms involved in QS systems include signals production, signals accumulation, and signals detection. In quorum sensing mechanisms, E. coli secretes chemical signal molecules during its exponential growth phase. The molecule known as autoinducers (Al-2) or pheromones is mediated by luxS gene. When a certain concentration of autoinducers is obtained, known as the threshold concentration, its presence is identified and lead to the initiation of the signal cascade. The consequence of this signal cascade may include changes of target gene expression, such as drug resistance. Factors affecting cell-to-cell signal systems are temperature, salinity, pressure, and pH. Bacteria may also be more resistant to antibiotics when they work together as a group via QS mechanism. Interfering with quorum sensing is a strategy that may be used to control bacterial virulence and antibiotic resistance. Control of QS in E. coli drug resistance include the use of AI-2 synthase inhibitors, modification of AI-2, the use AI-2 analogs, antagonism for LuxR-family receptor, signal synthesis inhibition, production of degradation enzymes and signal trapping.

References

  1. Guo M., Gamby S., Zheng Y. and Sintim H.O. (2013)., Small Molecule Inhibitors of AI-2 Signaling in Bacteria: State-of-the-Art and Future Perspectives for Anti-Quorum Sensing Agents – A review., International Journal of Molecular Sciences, 14(9), 17694-17728. http://doi.org/ 10.3390/ijms140917694.
  2. Toprak E., Veres A., Michel J.B., Chait R., Hartl D.L. and Kishony R. (2012)., Evolutionary paths to antibiotic resistance under dynamically sustained drug selection., Journal of Nature Genetics, 44, 101-105.
  3. Yurtsev E.A., Chao H.X., Datta M.S., Artemova T. and Gore J. (2013)., Bacterial cheating drives the population dynamics of cooperative antibiotic resistance plasmids., Journal of Molecular Systems Biology, 9, 683.
  4. World Health Organization (2016)., Antimicrobial Resistance., Retrieved from http://www.who.int/ antimicrobial-resistance/en/. Assessed on 10 February 2017.
  5. Baquero F., Alvarez-Ortega C. and Martinez J.L. (2009)., Ecology and evolution of antibiotic resistance., Journal of Environmental Microbiology Reports, 1(6), 469-476.
  6. Andersson D.I. and Hughes D. (2011)., Persistence of antibiotic resistance in bacterial populations., FEMS Microbiology Reviews, 35(5), 901-911.
  7. Fernandez L. and Hancock R.E. (2012)., Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance., Clinical Microbiology Reviews, 25, 661-681.
  8. Sánchez-Romero M.A. and Casadesús J. (2013)., Contribution of phenotypic heterogeneity to adaptive antibiotic resistance., Journal of Proceedings of the National Academy of Sciences, USA, 111(1), 355-360.
  9. Davies J. and Davies D. (2010)., Origins and evolution of antibiotic resistance., Microbiology and Molecular Biology Reviews, 74(3), 417-433.
  10. Berendonk T.U., Manaia C.M., Merlin C., Fatta-Kassinos D., Cytryn E., Walsh F., Bürgmann H., Sřrum H., Norström M. and Pons M.N. (2015)., Tackling antibiotic resistance: the environmental framework., Journal of Nature Reviews Microbiology, 13(5), 310-317.
  11. Schroeder M., Brooks D.B. and Brooks A.E. (2017)., The Complex Relationship between Virulence and Antibiotic Resistance., Genes, 8, 39. http://doi.org/10.3390/genes8010039
  12. Blázquez J., Couce A., Rodríguez-Beltrán J. and Rodríguez-Rojas A. (2012)., Antimicrobials as promoters of genetic variation., Journal of Current Opinion in Microbiology, 15(5), 561-569.
  13. Rodríguez-Rojas A., Rodríguez-Beltrán J., Couce A. and Blázquez J. (2013)., Antibiotics and antibiotic resistance: A bitter fight against evolution., International Journal of Medical Microbiology, 303(6), 293-297.
  14. Wright G.D. (2005)., Bacterial resistance to antibiotics: enzymatic degradation and modification., Advanced Drug Delivery Reviews, 57(10), 1451-1470.
  15. Ramirez M.S. and Tolmasky M.E. (2010)., Aminoglycoside Modifying Enzymes. Drug Resistance., Update Reviews Comment in Antimicrobial and Anticancer Chemotherapy, 13, 151-171.
  16. Wilson D.N. (2014)., Ribosome-targeting antibiotics and mechanisms of bacterial resistance., Journal of Nature Reviews Microbiology, 12, 35-48.
  17. Paterson D.L. and Bonomo R.A. (2005)., Extended-spectrum beta-lactamases: a clinical update., Clinical Microbiology Review, 18(4), 657-686.
  18. Rodrigues L., Ramos J., Couto I., Amaral L. and Viveiros M. (2011)., Ethidium bromide transport across Mycobacterium smegmatis cell-wall: Correlation with antibiotic resistance., BMC Microbiology, 11, 35.
  19. Li X.Z. and Nikaido H. (2009)., Efflux-mediated drug resistance in bacteria., Drugs, 64(2), 159-204.
  20. Brooks B.D., Brooks A.E. and Grainger D.W. (2013)., Antimicrobial Medical Devices in Preclinical Development and Clinical Use., Biomaterials Associated Infection, Springer: New York, NY, USA, 307-354.
  21. Ravn C., Tafin U.F., Bétrisey B., Overgaard S. and Trampuz A. (2016)., Reduced ability to detect surface-related biofilm bacteria after antibiotic exposure under in vitro conditions., Journal of ActaOrthopaedica, 87(6), 644-650.
  22. Bayramov D.F. and Neff J.A. (2016)., Beyond conventional antibiotics. New directions for combination products to combat biofilm., Advanced Drug Delivery Reviews, 112, 48-60. http://doi.org/10.1016/j.addr.2016.07.010
  23. Bjarnsholt T. and Givskov M. (2007)., The role of quorum sensing in the pathogenicity of the cunning aggressor., Anal Bioanal Chem., 387(2), 409-414.
  24. Hřiby N., Bjarnsholt T., Givskov M., Molin S. and Ciofu O. (2010)., Antibiotic resistance of bacterial biofilms., International Journal of Antimicrobial Agents, 35, 322-332.
  25. Tay S.B. and Yew W.S. (2013)., Development of quorum-based anti-virulence therapeutics targeting Gram-negative bacterial pathogens., International Journal of Molecular Sciences, 14(8), 16570-16599.
  26. Wu P. and Grainger D.W. (2006)., Drug/device combinations for local drug therapies and infection prophylaxis., Journal of Biomaterials, 27(11), 2450-2467.
  27. LaSarre B. and Federleb M.J. (2013)., Exploiting Quorum Sensing To Confuse Bacterial Pathogens., Microbiology and Molecular Biology Reviews, 77(1), 73-111.
  28. Breyers J.D. and Ratner J.P. (2004)., Bioinspired implant materials befuddle bacteria., ASM News, 70(5), 232-237.
  29. Davies D.G., Parsek M.R., Pearson J.P., Iglewski B.H., Costerton J.W. and Greenberg E.P. (1998)., The Involvement of Cell-to-Cell Signals in the Development of a Bacterial Biofilm., Science, 280, 295-298.
  30. Fuqua C. and Greenberg E.P. (1998)., Self- perception in bacteria: quorum sensing with acylatedhomoserine lactones., Journal of Current Opinion in Microbiology, 1(2), 183-189.
  31. Chen X., Schauder S., Potier N., Dorsselaer A.V., Pelczer I., Bassler B. and Hughson F. (2002)., Structural identification of a bacterial quorum-sensing signal containing boron., Nature, 415, 545-549.
  32. Wang T., Guan W., Huang Q., Yang Y., Yan W., Sun B. and Zhao T. (2016)., Quorum-sensing contributes to virulence, twitching motility, seed attachment and biofilm formation in the wild type strain Aac-5 of Acidovorax citrulli., Journal of Microbial Pathogenesis, 100, 133-140.
  33. Gonza´lez J.E. and Keshavan N.D. (2006)., Messing with Bacterial Quorum Sensing., Microbiology and Molecular Biology Reviews, 70(4), 859-875. http://doi.org/10.1128/MMBR.00002-06
  34. Hirapure P. (2016)., Inhibition of quoram sensing and bacterial communication: Potential for antifouling agents., marine algae. Retrieved from https://www.slideshare.net/hirapure/inhibhition-of-quorum-sensing. Assessed on 14February 2017.
  35. Laboratory of Microbial Technology (2017)., Quorum Sensing Research Group., Retrieved from http://www.agr.kyushu-u.ac.jp/lab/microbt/Research/QuorumSensing.html. Assessed on 15 February 2017.
  36. Kendall M.M. and Sperandio V. (2014)., Cell-to-cell signaling in E. coli and Salmonella., EcoSal Plus, 6(1). http://doi.org/10.1128/ecosalplus.ESP-0002-2013
  37. Surette M.G. and Bassler B.L. (1998)., Quorum sensing in Escherichia coli and Salmonella typhimurium., Journal of Proceedings of the National Academy of Science USA, 95(12), 7046-7050.
  38. Bassler B.L. (2002)., Small talk. Cell-to-cell communication in bacteria., Cell, 109(4), 421-424.
  39. Surette M.G., Miller M.B. and Bassler B.L. (1999)., Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production., Journal of Proceedings of the National Academy of Science USA, 96(4), 1639-1644.
  40. Wang L., Hashimoto Y., Tsao C-Y., Valdes J.J. and Bentley W.R. (2005)., Cyclic AMP (cAMP) and cAMP Receptor Protein Influence both Synthesis and Uptake of Extracellular Autoinducer 2 in Escherichia coli., Journal of Bacteriology, 187(6), 2066-2076. http://doi.org/10.1128/JB.187.6.2066–2076.2005
  41. Xavier K.B. and Bassler B.L. (2005)., Interference with AI-2-mediated bacterial cell–cell–communication., Nature, 437(7059), 750-753. http://doi.org/10.1038/nature03960
  42. Schopf S., Wanner G., Rachel R. and Wirth R. (2008)., Anarchaeal bi-species biofilm formed by Pyrococcus. Furiosus and Methanopyrus. kandleri., Archives of Microbiology, 190(3), 371-377.
  43. Johnson M., Montero C., Connors S., Shockley K., Bridger S. and Kelly R. (2005)., Population density-dependent regulation of exopolysaccharide formation in the hyperthermophilic bacterium Thermotoga maritima., Journal of Molecular Microbiology, 55(3), 664-674.
  44. Medigue C., Krin E., Pascal G., Barbe V., Bernsel A., Bertin P., Cheung F., Cruveiller S., D, Coping with cold: The genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125., Journal of Genome Research, 15, 1325-1335.
  45. Montgomery K., James C.C., Rebecca L., Pieter T.V. and Brendan P.B. (2013)., Quorum sensing in extreme environments., Life, 3(1), 131-148.
  46. Hall-Stoodley L., Costerton J.W. and Stoodley P. (2004)., Bacterial biofilms: from the natural environment to infectious diseases., Nature Reviews in Microbiology, 2, 95-108.
  47. vanHoudt R., Aertsen A., Moons P., Vanoirbeek K. and Michiels C.W. (2006)., N-acyl-l-homoserine lactone signal interception by Escherichia coli., FEMS Microbiol Lett., 256(1), 83-89.
  48. Bansal T., Englert D., Lee J., Hegde M., Wood T.K. and Jayaraman A. (2007)., Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression., Journal of Infection and Immunity, 75(9), 4597-4607.
  49. Visscher P.T., Prins R.A. and van Gemerden H. (1992)., Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat., FEMS Microbiology Ecology, 86(4), 283-293.
  50. Pituka E.V. and Hoover R.B. (2007)., Microbial extremophiles at the limits of life., Critical Reviews in Microbiology, 33, 183-209.
  51. Decho A.W. (2000)., Microbial biofilms in intertidal systems: An overview., Journal of Continental Shelf Research, 20, 1257-1273.
  52. Rezzonico F. and Duffy B. (2008)., Lack of genomic evidence of AI-2 receptors suggests a non-quorum sensing role for luxS in most bacteria., Journal of BMC Microbiology, 8, 154.
  53. Reen F., Almagro-Moreno S., Ussery D. and Boyd E. (2006)., The genomic code: inferring Vibrionaceae. Niche specialization., Nature Reviews Microbiology, 4, 1-8.
  54. Baker-Austin C., Potrykus J., Wexler M., Bond P.L. and Dopson M. (2010)., Biofilm development in the extremely acidophilic archaeonFerroplasma. acidarmanusFer1., Extremophiles, 14, 485-491.
  55. Wenbin N., Dejuan Z., Feifan L., Lei Y., Peng C., Xiaoxuan Y. and Hongyu L. (2011)., Quorum-sensing system in Acidithiobacillus ferrooxidans involved in its resistance to Cu2+., Journal of Letters in Applied Microbiology, 53(1), 84-91.
  56. Moreno-Paz M., Gomez M., Arcas A. and Parro V. (2010)., Environmental transcriptome analysis reveals physiological differences between biofilm and planktonic modes of life of the iron oxidizing bacteria Leptospirillum spp. in their natural microbial community., Journal of BMC Genomics, 11. 404-418.
  57. Ruiz L., Valenzuela S., Castro M., Gonzalez A., Frezza M., Soulere L., Rohwerder T., Queneau Y., Doutheau A., Sand W., Jerez C. and Guiliani N. (2008)., AHL communication is a widespread phenomenon in bio mining bacteria and seems to be involved in mineral-adhesion efficiency., Hydrometallurgy, 94, 133-137.
  58. Hammer B. and Bassler B. (2003)., Quorum sensing controls biofilm formation in Vibrio cholera., Journal of Molecular Microbiology, 50(1), 101-104.
  59. March J. and Bentley W. (2004)., Quorum sensing and bacterial cross-talk in biotechnology., Journal of Current Opinion in Biotechnology, 15, 495-502.
  60. Casadevall A. and Pirofski L. (1999)., Host-Pathogen Interactions: Redefining the Basic Concepts of Virulence and Pathogenicity., Journal of Infection and Immunity, 67(8), 3703-3713.
  61. Neidig A., Yeung A.T., Rosay T., Tettmann B., Strempel N., Rueger M., Lesouhaitier O. and Overhage J. (2013)., TypA is involved in virulence, antimicrobial resistance and biofilm formation in Pseudomonas aeruginosa., Journal of BMC Microbiology, 13, 77.
  62. Losada L., Deb Roy C., Radune D., Kim M., Sanka R., Brinkac L., Kariyawasam S., Shelton D., Fratamico P.M. and Kapur V. (2016)., Whole genome sequencing of diverse Shiga toxin-producing and non-producing Escherichia coli strains reveals a variety of virulence and novel antibiotic resistance plasmids., Plasmid, 83, 8-11.
  63. Scallan E., Hoekstra R.M., Angulo F.J., Tauxe R.V., Widdowson M.A., Roy S.L., Jones J.L. and Griffin P.M. (2011)., Foodborne illness acquired in the United States–major pathogens., Emerg. Infect. Dis., 17(1), 7-15. http://doi.org/10.3201/eid1701.P11101
  64. Aston P.M., Neil P., Richard E., Liljana P., John W., Kathie A.G., Claire J. and Tim J.D. (2015)., Insight into Shiga toxin genes encoded by Escherichia coli O157 from whole genome sequencing., Peer Journal, 3, 739.
  65. Ethelberg S., Olsen K.E., Scheutz F., Jensen C., Schiellerup P., Engberg J., Petersen A.M., Olesen B., Gerner-Smidt P. and Molbak K. (2004)., Virulence factors for hemolytic uremic syndrome., Emerging Infectious Diseases, 10(5), 842-847.
  66. Schmidt S., Wallbrecher R., van Kuppevelt T. and Brock R. (2015)., Methods to Study the Role of the Glycocalyx in the Uptake of Cell-Penetrating Peptides., Cell-Penetrating Peptides, Methods in Molecular Biology.Springer: New York, NY, USA, 123-131.
  67. Stewart P.S. and Costerton J.W. (2001)., Antibiotic resistance of bacteria in biofilms., Journal of the Lancet., 358, 135-138.
  68. Kester J.C. and Fortune S.M. (2013)., Persisters and beyond: Mechanisms of phenotypic drug resistance and drug tolerance in bacteria., Critical Reviews in Biochemistry and Molecular Biology, 49(2), 91-101. http://dx.doi.org/10.3109/10409238.2013.869543
  69. Boles B.R. and Singh P.K. (2008)., Endogenous oxidative stress produces diversity and adaptability in biofilm communities., Journal of Proceedings of the National Academy of Science, USA., 105(34), 12503-12508.
  70. Hirakawa H. and Tomita H. (2013)., Interference of bacterial cell-to-cell communication: a new concept of antimicrobial chemotherapy breaks antibiotic resistance., Journal of Frontiers Microbiology , 4, 114.
  71. Passador L., Tucker K.D., Guertin K.R., Journet M.P., Kende A.S. and Iglewski B.H. (1996)., Functional analysis of the Pseudomonas aeruginosa autoinducer PAI., Journal of Bacteriology, 178(20), 5995-6000.
  72. Schaefer A.L., Val D.L., Hanzelka B.L., Cronan J.E. and Greenberg E.P. (1996)., Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activityof a purified Vibrio fischeri LuxI protein., Journal of Proceedings of the National Academy of Science USA, 93, 9505-9509.
  73. Zhu J., Beaber J.W., More M.I., Fuqua C., Eberhard A. and Winans S.C. (1998)., Analogs of the autoinducer 3-oxooctanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens., Journal of Bacteriology, 180(20), 5398-5405.
  74. Ishida T., Ikeda T., Takiguchi N., Kuroda A., Ohtake H. and Kato J. (2007)., Inhibition of quorum sensing in Pseudomonas aeruginosa by N-acyl cyclopentylamides., Journal of Applied and Environmental Microbiology, 73(10), 3183-3188.
  75. Givskov M., De Nys R., Manefield M., Gram L., Maximilien R., Eberl L., Molin oren, Steinberg Peter D. and Kjelleberg Staffan (1996)., Eukaryotic interference with homoserine lactone-mediated prokaryotic signaling., Journal of Bacteriology, 178(22), 6618-6622.
  76. Manefield M., De Nys R., Kumar N., Read R., Givskov M., and Steinberg P. (1999)., Evidence that halogenated furanones from Deliseapulchra inhibit acylatedhomoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein., Microbiology, 145(2), 283-291.
  77. Parsek M.R., Val D.L., Hanzelka B.L., Cronan J.E. and Greenberg E.P. (1999)., Acyl homoserine-lactone quorum-sensing signal generation., Journal of Proceedings of the National Academy of Science USA., 96(8), 4360-4365.
  78. Chung J., Goo E., Yu S., Choi O., Lee J., Kim J., Kim Hongsup, Igarashi Jun, Suga Hiroaki, Moon Jae Sun, Hwang Ingyu and Rhee Sangkee (2011)., Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase., Journal of Proceedings of the National Academy of Science USA., 108(29), 12089-12094.
  79. Gutierrez J.A., Crowder T., Rinaldo-Matthis A., Ho M.C., Almo S.C. and Schramm V.L. (2009)., Transition state analogs of 5′-methylthioadenosine nucleosidase disrupt quorum sensing., Journal of Nature Chemical Biology, 5(4), 251-257.
  80. Vance J.E. and Peake K.B. (2011)., Function of the Niemann–Pick type C proteins and their bypass by cyclodextrin., Journal of Current Opinion in Lipidology, 22, 204-209.
  81. Roy V., Fernandes R., Tsao C.-Y. and Bentley W.E. (2010)., Cross species quorum quenching using a native ai-2 processing enzyme., ACS Chem. Biol., 5(2), 223-232.
  82. Xue X., Pasparakis G., Halliday N., Winzer K., Howdle S.M., Cramphorn C.J., Cameron N.R., Gardner P.M., Davis B.G., Fernandez-Trillo F. and Alexander C. (2011)., Synthetic polymers for simultaneous bacterial sequestration and quorum sense interference., Angew. Chem. Int. Ed. Engl., 50, 9852-9856.
  83. Smith J.A., Wang J., Nguyen-Mau S.M., Lee V. and Sintim H.O. (2009)., Biological screening of a diverse set of AI-2 analogues in Vibrio harveyisuggests that receptors which are involved in synergistic agonism of AI-2 and analogues are promiscuous., Chem. Commun. (Camb), 45, 7033-7035.