6th International Young Scientist Congress (IYSC-2020) will be Postponed to 8th and 9th May 2021 Due to COVID-19. 10th International Science Congress (ISC-2020).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Magnetotactic bacteria and their application in environmental clean-up: A review

Author Affiliations

  • 1Dept. of Environ. Science and Eng., Indian Institute of Technology (IIT) Indian School of Mines (ISM), Dhanbad - 826004, Jharkhand, India
  • 2Dept. of Environ. Science and Eng., Indian Institute of Technology (IIT) Indian School of Mines (ISM), Dhanbad - 826004, Jharkhand, India

Int. Res. J. Environment Sci., Volume 6, Issue (7), Pages 63-68, July,22 (2017)


Magnetotactic bacteria are a miscellaneous cluster of microorganisms having geomagnetism aided navigation property against applied magnetic field. This oneness is because of the presence of intracellular organelles magnetosomes comprising a membrane-bound crystals of magnetic iron minerals which are formed due to partial reduction of ferric iron in the iron-rich environment. It can biomineralize magnetic particles into uniform size structure, which has gained much more attention over chemically synthesized magnetic nanoparticles. The advantage of this bacteria over other microorganisms are that they are non-pathogenic,motile and easily isolated from the environment. With implications in various fields, including evolutionary biology, biogeochemistry, and nanotechnology, research on MTB and their magnetosomes has steadily increased since they were described by Richard Blakemore in 1975. Regardless of wide acknowledgment, there is still the lesser-known application of magnetotactic bacteria in remediation of wastewater. This review paper deals with the diversity of magnetotactic bacteria and their application in environmental clean-up.


  1. Kopp R.E. and Kirschvink J.L. (2008)., The identification and biogeochemical interpretation of fossil magnetotactic bacteria., Earth-Sci. Rev., 86, 42-61.
  2. Roberts A.P., Florindo F., Villa G., Chang L., Jovane L., Bohaty S.M., Larrasoaņa Juan C., Heslop D. and Gerald John, D.F. (2011)., Magnetotactic bacterial abundance in pelagic marine environments is limited by organic carbon flux and availability of dissolved iron., Earth Planet Sc Lett., 310, 441-452.
  3. Lefevre C.T., Menguy N., Abreu F., Lins U., Posfai M., Prozorov T., Pignol D., Frankel R.B. and Bazylinski D.A. (2011)., A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria., Science., 334, 1720-1723.
  4. Moskowitz B.M., Bazylinski D.A., Egli R., Frankel R.B. and Edwards K.J. (2008)., Magnetic properties of marine magnetotactic bacteria in a seasonally stratified coastal pond (Salt Pond, MA, USA)., Geophys. J. Int., 174, 75-92.
  5. Lefevre C.T., Abreu F., Schmidt M.L., Lins U., Frankel R.B., Hedlund B.P. and Bazylinski D.A. (2010)., Moderately thermophilic magnetotactic bacteria from hot springs in Nevada., Appl. Environ. Microbiol., 76(11), 3740-3743.
  6. Lefevre C.T., Frankel R.B., Posfai M., Prozorov T. and Bazylinski D.A. (2011)., Isolation of obligately alkaliphilic magnetotactic bacteria from extremely alkaline environments., Environ. Microbiol., 13, 2342-2350.
  7. Jogler C. and Schuler D. (2009)., Genomics, genetics, and cell biology of magnetosome formation., Annu Rev Microbiol., 63, 501-521.
  8. Yan L., Zhanga S., Chenb P., Liud H., Yin H. and Li H. (2012)., Magnetotactic bacteria, magnetosomes and their application., Microbiol. Res., 167(9), 507-519.
  9. Lin W., Li J., Schuler D., Jogler C. and Pan Y. (2009)., Diversity analysis of magnetotactic bacteria in Lake Miyun, northern China, by restriction fragment length polymorphism., Syst. Appl. Microbiol., 32(5), 342-350.
  10. Lefevre T.C. and Bazylinski A.D. (2013)., Ecology, Diversity, and Evolution of Magnetotactic Bacteria., Microbiol.Mol.Biol.Rev., 77(3), 497-526.
  11. Jogler C., Wanner G., Kolinko S., Niebler M., Amann R., Petersen N., Kube M., Reinhardt R. and Schuler D. (2011)., Conservation of proteobacterial magnetosome genes and structures in an uncultivated member of the deep-branching Nitrospira phylum., Proc. Natl. Acad. Sci. U.S.A., 108(3), 1134-1139.
  12. Cox B.L., Popa R., Bazylinski D.A., Lanoil B., Douglas S., Belz A., Engler D.L. and Nealson K.H. (2002)., Organization and elemental analysis of P-, S-, and Fe-rich inclusions in a population of freshwater magnetococci., Geomicrobiol. J., 19(4), 387-406.
  13. Bazylinski D.A., Dean A.J., Williams T.J., Long L.K., Middleton S.L. and Dubbels B.L. (2004)., Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch., Microbiol., 182, 373-387.
  14. Kolinko S., Jogler C., Katzmann E., Wanner G., Peplies J. and Schuler D. (2012)., Single-cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3., Environ. Microbiol., 14(7), 1709-1721.
  15. Bazylinski D.A., Williams T.J., Lefevre C.T., Trubitsyn D., Fang J., Beveridge T.J., Moskowitz B.M., Ward B., Schubbe S., Dubbels B.L. and Simpson B. (2013)., Magnetovibrio blakemorei, gen. nov. sp. nov., a new magnetotactic bacterium (Alphaproteobacteria: Rhodospirillaceae) isolated from a salt marsh., Int. J. Syst. Evol. Microbiol., 63, 1824-1833.
  16. Bazylinski D.A., Williams T.J., Lefevre C.T., Berg R.J., Zhang C.L., Bowser S.S., Dean A.J. and Beveridge T.J. (2013)., Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov.; Magnetococcales ord. nov.) at the base of the Alphaproteobacteria., Int. J. Syst. Evol. Microbiol., 63(3), 801-808.
  17. Schuler D., Spring S. and Bazylinski D.A. (1999)., Improved technique for the isolation of magnetotactic spirilla from a freshwater sediment and their phylogenetic characterization., Syst. Appl. Microbiol., 22(3), 466-471.
  18. Bazylinski D.A. and Williams T.J. (2006)., Ecophysiology of magnetotactic bacteria., In Schüler D (ed), Magnetoreception and magnetosomes in bacteria, Springer, Berlin, Germany, 37-75.
  19. Schleifer K.H., Schuler D., Spring S., Weizenegger M., Amann R., Ludwig W. and Kohler M. (1991)., The genus Magnetospirillum gen. nov. Description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov., Syst. Appl. Microbiol., 14(4), 379-385.
  20. Heyen U. and Schuler D. (2003)., Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor., Appl. Microbiol. Biotechnol., 61, 536-544.
  21. Geelhoed J.S., Kleerebezem R., Sorokin D.Y., Stams A.J.M. and van Loosdrecht M.C.M. (2010)., Reduced inorganic sulfur oxidation supports autotrophic and mixotrophic growth of Magnetospirillum strain J10 and Magnetospirillum gryphiswaldense., Environ. Microbiol., 12(4), 1031-1040.
  22. Blakemore R.P., Short K.A., Bazylinski D.A., Rosenblatt C. and Frankel R.B. (1985)., Microaerobic conditions are required for magnetite formation within Aquaspirillum magnetotacticum., Geomicrobiol. J., 4, 53-71.
  23. Lefevre C.T., Bernadac A., Yu-Zhang K., Pradel N. and Wu L.F. (2009)., Isolation and characterization of a magnetotactic bacterial culture from the Mediterranean Sea., Environ. Microbiol., 11(7), 1646-1657.
  24. Williams T.J., Zhang C.L., Scott J.H. and Bazylinski D.A. (2006)., Evidence for autotrophy via the reverse tricarboxylic acid cycle in the marine magnetotactic coccus strain MC-1. Appl., Environ. Microbiol., 72(2), 1322-1329.
  25. Schubbe S., Williams T.J., Xie G., Kiss H.E., Brettin T.S., Martinez D., Ross C.A., Schuler D., Cox B.L., Nealson K.H. and Bazylinski D.A. (2009)., Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1., Appl. Environ. Microbiol., 75(14), 4835-4852.
  26. Bazylinski D.A., Frankel R.B., Garratt-Reed A.J. and Mann S. (1991)., Biomineralization of iron sulfides in magnetotactic bacteria from sulfidic environments., In Frankel RB, Blakemore RP (ed), Iron biominerals, Plenum Press, New York, NY, 239-255.
  27. Zhou K., Zhang W.Y., Yu-Zhang K., Pan H.M., Zhang S.D., Zhang W.J., Yue H.D., Li Y., Xiao T. and Wu L.F. (2012)., A novel genus of multicellular magnetotactic prokaryotes from the Yellow Sea., Environ. Microbiol., 14, 405-413.
  28. Keim C.N., Abreu F., Lins U., de Barros H.L. and Farina M. (2004)., Cell organization and ultrastructure of a magnetotactic multicellular organism., J. Struct. Biol., 145(3), 254-262.
  29. Wenter R., Wanner G., Schuler D. and Overmann J. (2009)., Ultrastructure, tactic behaviour and potential for sulfate reduction of a novel multicellular magnetotactic prokaryote from North Sea sediments., Environ. Microbiol., 11(6), 1493-1505.
  30. Lefevre C.T., Abreu F., Lins U. and Bazylinski D.A. (2010)., Nonmagnetotactic multicellular prokaryotes from low-saline, nonmarine aquatic environments and their unusual negative phototactic behavior., Appl. Environ. Microbiol., 76(10), 3220-3227.
  31. Lefevre C.T., Viloria N., Schmidt M.L., Posfai M., Frankel R.B. and Bazylinski D.A. (2012)., Novel magnetite producing magnetotactic bacteria belonging to the Gammaproteobacteria., ISME J., 6(2), 440-450.
  32. Vali H., Forster O., Amarantidis G. and Petersen N. (1987)., Magnetotactic bacteria and their magnetofossils in sediments., Earth Planet. Sci. Lett., 86(2-4), 389-400.
  33. Flies C.B., Peplies J. and Schuler D. (2005)., Combined approach for characterization of uncultivated magnetotactic bacteria from various aquatic environments., Appl. Environ. Microbiol., 71(5), 2723-2731.
  34. Lefevre C.T., Frankel R.B., Abreu F., Lins U. and Bazylinski D.A. (2011)., Culture-independent characterization of a novel, uncultivated magnetotactic member of the Nitrospirae phylum., Environ. Microbiol., 13, 538-549.
  35. Jogler C., Niebler M., Lin W., Kube M., Wanner G., Kolinko S., Stief P., Beck A.J., De Beer D., Petersen N., Pan Y., Amann R., Reinhardt R. and Schuler D. (2010)., Cultivation-independent characterization of \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"Candidatus Magnetobacterium bavaricum\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\" via ultrastructural, geochemical, ecological and metagenomic methods., Environ. Microbiol., 12(9), 2466-2478.
  36. Torres de., Araujo F.F., Pires M.A., Frankel R.B. and Bicudo C.E.M. (1986)., Magnetite and magnetotaxis in algae., Biophys. J., 50(2), 375-378.
  37. Zhu K., Pan H., Li J., Yu-Zhang K., Zhang W.Y., Zhou K., Yue H., Pan Y. and Zhang S.D. (2010)., Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea., Res Microbiol., 161(4), 276-283.
  38. Prabhu N.N. and Kowshik M. (2016)., Techniques for the Isolation of Magnetotactic Bacteria., J.Microbiol.Biochem.Tech., 8, 188-194.
  39. Sakaguchi T., Tsujimura N. and Matsunaga T. (1996)., A novel method for isolation of magnetic bacteria without magnetic collection using magnetotaxis., J of Microbiol Methods., 26(1-2), 139-145.
  40. Jun G., Hongmiao P., Haidong Y., Tao S., Yong Z., Guanjun C., Longfei W. and Tian X. (2006)., Isolation and biological characteristics magnetotactic bacterium YSC-1 of aerobic marine., Chinese J. Oceanol. Limnol., 24(4), 358-363.
  41. Wenbing Li., Longjiang Y., Pengpeng Z. and Min Z. (2007)., Isolation of magnetotactic bacterium WM-1 from freshwater sediment and phylogenetic characterization., Arch. Microbiol., 188, 97-102.
  42. Huiping S., Xingang L., Jinsheng S., Xiaohong Y., Yanhong W. and Zenhua W. (2007)., Biosorption Equilibrium and Kinetics of Au (II1) and Cu(I1) on Magnetotactic Bacteria., Chin. J. Chem. Eng., 15(6), 847-854.
  43. Qu Y., Zhang X., Xu J., Zhang W. and Guo Y. (2014)., Removal of hexavalent chromium from wastewater using magnetotactic Bacteria., Sep. Purif. Technol., 136, 10-17.
  44. Song H.P., Li X.G., Sun J.S., Xu S.M. and Han X. (2008)., Application of a magnetotactic bacterium, Stenotrophomonas sp. to the removal of Au (III) from contaminated wastewater with a magnetic separator., Chemosphere., 72(4), 616-621.