6th International Virtual Congress (IVC-2019) And Workshop.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Biosorption of chromium and zinc by micrococcus varians and staphylococcus aureus isolated from soil

Author Affiliations

  • 1Federal University of Technology, P.M.B 65, Minna, Niger State, Nigeria
  • 2Federal University of Technology, P.M.B 65, Minna, Niger State, Nigeria
  • 3Bioresources Development Centre, National Biotechnology Development Agency, KM 5, Ogbomoso/Iresapa Road, Onipaanu, Ogbomoso, Oyo State, Nigeria
  • 4Federal University of Technology, P.M.B 65, Minna, Niger State, Nigeria
  • 5Federal University of Technology, P.M.B 65, Minna, Niger State, Nigeria

Int. Res. J. Environment Sci., Volume 6, Issue (5), Pages 1-5, May,22 (2017)

Abstract

Chromium and Zinc biosorption by Staphylococcus aureus and Micrococcus varians were carried out using 1ml aliquot of 24 hours old bacterial suspensions in 50ml nutrient broth containing distintive concentration of chromium and Zinc (0.5, 1.0, 1.5 ppm) and the pH was adjusted to 7.0 incubated at 370C with continuous shaking. The study shows that the highest biosorption rate of metal concentration was recorded by Micrococcus varians with 95.1% for Chromium and 89.0% for Zinc and the highest rate of biosorption by Staphylococcus aureus was 84.0% for Chromium and 64.0% for Zinc both on the seventh day. These findings indicates that under favourable condition Staphylococcus aureus and Micrococcus varians can expel heavy metals (Chromium and Zinc) from the earth, with Micrococcus varians having the highest potential.

References

  1. Han F.X., Su Yi., Monts David L., Plodinec John M., Kingery William L., Triplett Glover E. and Banin A. (2002)., Industrial age anthropogenic inputs of heavy metals into the pedosphere., Natur wissenschaften, 89(11), 497-504.2.
  2. Sayyed M.R.G. and Sayadi M.H. (2011)., Variations in the heavy metal accumulations within the surface soils from the Chitgar industrial area of Tehran., Proceedings of the Int. Acad of Ecol and Environ Sci, 1(1), 36-46.3.
  3. Raju K.V., Somashekar R.K. and Prakash K.L. (2013)., Spatio-temporal variation of heavy metals in Cauvery River basin., Proceedings of the Int. Acad of Ecol and Environ Sci, 3(1), 59-75.4.
  4. Prajapati S.K. and Meravi N. (2014)., Heavy metal speciation of soil and Calotropisprocera from thermal power plant area., Proceedings of the Int. Acad of Ecol and Environ Sci, 4(2), 68-71.5.
  5. Sayadi M.H. and Rezaei M.R. (2014)., Impact of land use on the distribution of toxic metals in surface soils in Birjand city, Iran., Proceedings of the Int. Acad of Ecol and Environ Sci, 4(1), 18-29.6.
  6. Zojaji F., Hassani A.H. and Sayadi M.H. (2014)., Bioaccumulation of chromium by Zea mays in wastewater-irrigated soil: An experimental study., Proceedings of the Int. Acad of Ecol and Environ Sci, 4(2), 62-67.7.
  7. Kadirvelu K., Senthilkumar P., Thamaraiselvi K. and Subburam V. (2002)., Activated carbon prepared from biomass as a dsorbent: elimination of Ni(II) from aqueous solution., Bioresour. Technolo., 81(1), 87–90. 8.
  8. Torres E., Cid A., Herrero C. and Abalde J. (1998)., Removal of cadmium ions by the marine diatom phaeodactylumtricornutumbohlin accumulation and long-term kinetics of uptake., Bioresour. Technol, 63(3), 213–220. 9.
  9. Munoz R. and Guieysse B. (2006)., Algal–bacterial processes for the treatment of hazardous contaminants: areview, Water Research., 40(15), 2799–2815. 10.
  10. Yigit S. and Altindag A. (2006)., Concentration of heavy metals in the food web of Lake Egirdir, Turkey., J. Environ Biol, 27(3), 475–478,11.
  11. Hooda V. (2003)., Phytoremediation of toxic metals from soil and wastewater., J. Environ Biol, 28(2), 367–376, 2007. Ind. J. Environ Health, 45(1), 73–82, 2003. 12.
  12. Shukla O., Rai U., Singh N., Dubey S. and Baghel V. (2007)., Isolation and characterization of chromate resistant bacteria from tannery effluent., J. Environ. Biol., 28(2), 399.13.
  13. Kadirvelu K., Thamaraiselvi K. and Namasivayam C. (2001)., Adsorption of nickel (II) from aqueous solution on to activated carbon prepared from coir pith., Separat. and Purifi. Technolo, 24(3), 497-505, 14.
  14. Sharma D.C. and Sharma C.P. (1993)., Chromium uptake and its effects on growth and biological yield of wheat., Cereal Research Communications, 21(4), 317-322.15.
  15. Panda S.K. and Patra H.K. (2000)., Nitrate and ammonium ions effect on the chromium toxicity in developing wheat seedlings., Proceedings of the National Academy of Sciences, India,70, 75-80.16.
  16. Moral R., Navarro Pedreno J., Gomez I. and Mataix J. (1995)., Effects of chromium on the nutrient element content and morphology of tomato., Journal of Plant Nutrbition, 18(4), 815-822.17.
  17. Moral R., Pedreno Navarro J., Gomez I. and Mataix J. (1996)., Absorption of Cr and effects on micronutrient content in tomato plant (LycopersicumesculentumM.)., Agrochimica, 40(2-3), 132-138.18.
  18. Nematshahi N., Lahouti M. and Ganjeali A. (2012)., Accumulation of chromium and its effect on growth of (Allium cepacv. Hybrid)., European Journal of Experimental Biology, 2(4), 969-974. 19.
  19. Manivasagaperumal R., Balamurugan S., Thiyagarajan G. and Sekar J. (2011)., Effect of zinc on germination, seedling growth and biochemical content of cluster bean (Cyamopsistetragonoloba (L.) Taub)., Current Botany, 2(5), 11-15.20.
  20. Doncheva S., Stoynova Z. and Velikova V. (2001)., Influence of succinate on zinc toxicity of pea plants., Journal of Plant Nutrition, 24(6), 789-804.21.
  21. Bonnet M., Camares O. and Veisseire P. (2000)., Effects of zinc and influence of Acremoniumloliion growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (LoliumperenneL. cvApollo)., Journal of Experimental Botany, 51(346), 945-953.22.
  22. Zhang W.J., Jiang F.B. and Ou J.F. (2011)., Global pesticide consumption and pollution: with China as a focus., Proceedings of the Int. Acad of Ecol and Environ Sci, 1(2), 125-144.23.
  23. Falahiardakani A. (1984)., Contamination of environment with heavy metals emitted from automotives., Ecotoxicol and Environ Saf, 8(2), 152-161.24.
  24. Chen H.M. (2002)., Behaviors and Environmental Quality of Chemical Substances in the Soil., Science Press, Beijing, China25.
  25. Joo J.H., Hassan S.H. and Oh S.E. (2010)., Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus., Int. Biodeter. Biodegrada, 64(8), 734-741.26.
  26. Prasenjit B. and Sumathi S. (2005)., Uptake of chromium by Aspergillus foetidus., Journal of Mat. Cyc. and Waste Managt, 7(2), 88-92. 27.
  27. Chatterjee S., Chattopadhyay P., Roy S. and Sen S.K. (2008)., Bioremediation: a tool for cleaning polluted environments., J. App. Biosci, 11, 594-601. 28.
  28. Fred T.D. Jr., Jeffrey D.P., Ronald J.N., Jonathan N.E. and Jose A.S.G. (2001)., Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus)., J. Plant Physiol., 158, 777-786.29.
  29. Yan G. and Viraraghavan T. (2003)., Heavy metal removal from aqueous solution by fungus Mucorrouxii., Water Res., 37, 4486-4496.30.
  30. Hamza D., Mohammed A. and Sale A. (2012)., Potentials of bacterial isolates in bioremediation of petroleum refinery wastewater., Journal of Applied Phytotechnology in Environmental Sanitation, 1(3), 131-138.31.
  31. Kabala C. and Singh B.R. (2001)., Fractionation and mobility of copper, lead and zinc in soil profiles in the vicinity of a copper smelter., J. Environ. Qual., 30, 485-492.32.
  32. Abioye O.P., Adefisan A.E., Aransiola S.A. and Damisa D. (2015)., Biosorption of Chromium by Bacillus subtilis and Pseudomonas aeruginosa Isolated from Waste Dump Site., Expert Opin Environl Biol. 4(1), doi.org/10.4172/2325-9655. 1000112.