6th International Young Scientist Congress (IYSC-2020) and Workshop on Intellectual Property Rights. 10th International Science Congress (ISC-2020).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Hyperaccumulation: A Phytoremediation approach for pollution control

Author Affiliations

  • 1Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
  • 2Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
  • 3Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India

Int. Res. J. Environment Sci., Volume 6, Issue (11), Pages 46-52, November,22 (2017)


The problem of environmental pollution has achieved unprecedented approach throughout the world. Soil pollution has accelerated drastically since the beginning of industrial revolution, especially the accumulation of heavy metal. Human activities are the main source of heavy metal accumulation in soil on a global scale (eg 5.6-38 x 106 kg Cd /yr) and comes mainly from industrial activities like mining, smelting, refining and manufacturing processes. The toxic substances are released into the environment and cause variety of toxic effects on living organism and their food chain. In areas with high anthropogenic pressures, heavy metals such as Cd, Cu, Pd, Cr, Zn and Ni are important environmental pollutants. They are also present in significant amount in sewage sludge and reach the soil where they become part of the lifecycle. This review explores phyto-remediation as a potential remediation strategy which is eco-friendly and low tech alternative to more active and intrusive remedial methods.


  1. Shen Z.G., Li X.D., Wang C.C., Chen H.M. and Chua H. (2002)., Lead phytoextraction from contaminated soil with high-biomass plant species., Journal of environmental quality, 31(6), 1893-1900.
  2. Bridge G. (2004)., Contested terrain: mining and the environment., Annu. Rev. Environ. Resour., 29, 205-259.
  3. Singh B. and Gupta Chandan Kumar (2008)., Phytoremediation of heavy metal polluted soils for sustaining productivity., Golden Jubilee Conference on Challenges and Emerging Strategies for Improving Plant Productivity, 12-14 Nov. IARI, New Delhi
  4. Passow H., Rothstein A. and Clakson T.W. (1961)., The general pharmacology of heavy metals., Pharmacological Review, 13(2), 185-224.
  5. Borovik A.J. (1990)., Characteristics of heavy metals in biological system., Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects, CRC Press, Boca Raton, Florida.
  6. Pickering K.T. and Owen L.A. (1997)., Water Resources and Pollution., An Introduction to Global Environmental, Issues 2nd (eds). London, New York, 187-207.
  7. Dickinson N.M., Lepp N.W. and Surtan G.T.K. (1987)., Lead and potential health risks from subsitence food crops in urban Kenya., Environmental Geochemistry and Health, 9(2), 37-42.
  8. Assche F. and Clijsters H. (1990)., Effects of metals on enzyme activity in plants., Plant Cell Environ., 13(3), 195-206.
  9. Taiz L. and Zeiger E. (2002)., Plant Physiology., Sinauer Associates (eds.). Sunderland, U.S.A., 690.
  10. Jadia C.D. and Fulekar M.H. (2008)., Phytotoxicity and remediation of heavy metals by fibrous root grass (sorghum)., Journal of Applied Biosciences, 10(1), 491-499. ISSN 1997 – 5902: www.biosciences.elewa.org
  11. Turner A.P. and Dickinson N.M. (1993)., Copper tolerance of Acer pseudoplatanus L. (Sycamore) in tissue culture., New Phytologist, 123(3), 523-530.
  12. Kuzovkina Y.A., Knee M. and Quigley M.F. (2004)., Cadmium and copper uptake and translocation in five Willow (Salix L.) species., Int. J. Phytoremediation, 6(3), 269-287.
  13. Boonyapookana B., Parkpian P., Techapinyawat S., Delaune R.D. and Jugsujinda A. (2005)., Phytoaccumulation of lead by Sunflower (Helianthus annus), Tobacco (Nicotianatabacum), and Vetiver (Vetiveriazizanioides)., J. Environ. Science Health, 40(1), 117-137.
  14. Wilkins D.A. (1957)., A technique for the measurement of lead tolerance in plants., Nature, 180, 37-38.
  15. Baker A.J.M. (1987)., Metal tolerance., New Phytologist, 106(Suppl.), 93-111.
  16. Macnair M.R. (1990)., The genetics of metal tolerance ion natural populations., Heavy metal tolerance in plants: evolutionary aspects, CRC Press, Roca Baton Florida, 235-255.
  17. Searcy K.B. and Mulcahy D.L. (1985)., The parallel expression of metal tolerance in pollen and sporophyte of Silenedioca (L.) clairi; S. Alba (mill) krouse and mimullus guttatus., Theoretical and Applied Genetics, 69(5), 597-602
  18. Chaney W.R. and Strickland R.C. (1984)., Relative toxicity of heavy metals to red pine pollen germination and germ tube elongation., Journal of Environmental quality, 13(3), 391-394.
  19. Quereshi J.A., Colin H.A., Hardwick K. and Thurman D.A. (1981)., Metal tolerance in tissue culture of Anthoxanthum odoratum., Plant Cell reports, 1(2), 80-82.
  20. Debergh P.C. and Zimmerman R.H. (1991)., Micropropagation: technology and application., Kluwer academic publishers, Netherlands.
  21. Ten Hoopen H.J.G., Nobel P.J., Schapp A., Fuchs A. and Roels J.A. (1985)., Effects of temperature on Cd toxicity to the green alga Scendesmusacta 1: development of Cd tolerance in batch cultures., Antonie Van Leuvenhoek, 51(3), 344-346.
  22. Huang B., Hatch E. and Goldsbrough P.B. (1987)., Selection and characterisation of Cd tolerant cells of tomato., J.of Plant Science, 52(3), 211-221.
  23. Turner A.P. and Dickinson NM (1993)., Copper tolerance of Acer pseudoplatanus L. (Sycamore) in tissue culture, New Phytologist, 123(3), 523-530.
  24. Allen E.B. (1988)., The reconstruction of disturbed arid lands: An ecological approach., West view press, Boulder Colarado and AAS, Washington DC,USA.
  25. Aboulroos S.A., Helal M.I.D. and Kamel M.M. (2006)., Remediation of Pb and Cd polluted soils using in situ immobilization and phytoextraction techniques., Soil Sediment Contam., 15, 199-215.
  26. Schnoor J.L. (1997)., Phytoremediation, University of Iowa, Department of Civil and Environmental Engineering., Center for Global and Regional Environmental Research, Iowa City, Iowa.
  27. Prasad M.N.V. and Freitas H. (2003)., Metal hyperaccumulation in plants, Biodiversity prospecting for phytoremediation technology., Electron J. Biotechnology, 6(3), 285-321.
  28. Cunningham S.D. and Ow D.W. (1996)., Promises and prospects of phytoremediation., Plant physiology, 110(3), 715-119.
  29. Nandakumar P.B.A., Dushenkov V., Motto H. and Raskin I. (1995)., Phytoextraction: use of plants to remove heavy metal from soils., Environment Sci. and technology, 29(5), 1232-1238.
  30. Varsha M., Nidhi M. and Anurag M. (2010)., Heavy metals in plants: phytoremediation: plants used to remediate heavy metal pollution., Agriculture and Biology Journal of North America, 1(1), 40-46.
  31. Khan F.I., Hussain T. and Hejazi R. (2004)., An overview and analysis of site remediation technologies., Journal of Environmental Management, 71, 95-122.
  32. Pilon-Smits E. (2005)., Phytoremediation., Annu. Rev. Plant. Biol., 56, 15-39. Available at arjournals.annualreviews.org
  33. Chaney R.L. (1983)., Plant uptake of inorganic waste constituents., In: JF Parr PBM, JM Kla (ed) Land Treatment of Hazardous Waste. Noyes Data Corporation, Park Ridge, NJ, USA, 50-76.
  34. Brooks R.R. (1998)., Plants that hyperaccumulate heavy metals., Wallingford: Cab Intl., 381.
  35. Marques A.P.G.C., Oliveira R.S., Samardjieva K.A., Pissarra J., Rangel A.O.S.S. and Castro P.M.L. (2008)., EDDS and EDTA enhanced Zinc accumulation by Solanumnigrum inoculated with arbuscularmycorrhizal fungi grown in contaminated soil., Chemosphere, 70, 1002-1014.
  36. Peer W., Baxter I., Richards E., Freeman J. and Murphy A. (2005)., Phytoremediation and hyperaccumulator plants., Molecular Biology of Metal Homeostasis and Detoxification. In: Tamas M, Martinoia E (eds), Springer, Berlin, Topics in Current Genetics, 14, 299-340.
  37. Roy S. and Singh S.B. (2006)., Effect of soil type, soil pH, and microbial activity on persistence of clodinafop herbicide., Bull. Environ. Contam. Toxicol, 77, 260-266.
  38. Sappin-Didier V., Vansuyts G., Mench M. and Briat J.F. (2005)., Cadmium availability at different soil pH to transgenic tobacco overexpressing ferritin., Plant Soil, 270(1), 189-197.
  39. Zhou Q.X. and Song Y.F. (2004)., Remediation of contaminated soils principles and methods., Beijing Sciences Press, China.
  40. Wei S.H., Teixeira da Silva J.A. and Zhou Q.X. (2008)., Agro-improving method of phytoextracting heavy metal contaminated soil., J. Hazard. Mater., 150(3), 662-668.
  41. Wu H., Tang S., Zhang X., Guo J., Song Z., Tian S. and Smith D.L. (2009)., Using elevated CO2 to increase the biomass of a Sorghum vulgare x Sorghum vulgare var. sudanense hybrid and Trifoliumpratense L. and to trigger hyperaccumulation of cesium., J Hazard Mater, 170, 861-870.
  42. Jankong P., Visoottiviseth P. and Khokiattiwong S. (2007)., Enhanced phytoremediation of arsenic contaminated land., Chemosphere, 68(10), 1906-1912.
  43. Barrutia O., Epelde L., GarcĂ a-Plazaola J.I., Garbisu C. and Becerril J.M. (2009)., Phytoextraction potential of two Rumexacetosa L. Accessions collected from metalliferous and non-metalliferous sites: Effect of fertilization., Chemosphere, 74(2), 259-264.
  44. Marques A.P.G.C., Oliveira R.S., Rangel A.O.S.S. and Castro P.M.L. (2008)., Application of manure and compost to contaminated soils and its effect on zinc accumulation by Solanum nigrum inoculated with arbuscular mycorrhizal fungi., Environ. Pollut., 151(3), 608-620.
  45. Salt D.E., Blaylock M., Kumar N.P.B.A., Dushenkov V., Ensley B.D., Chet I. and Raskin I. (1995)., Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants., Biotechnology, 13, 468-474.
  46. Marschner H. (1991)., Mineral nutrition of higher plants., 2nd edition Academic Press, New York, London.
  47. Ensley B.D. (2000)., Rationale for the Use of Phytoremediation., Phytoremediation of toxic metals:Using plants to clean-up the environment. John Wiley Publishers: New York.
  48. Karkhanis M., Jadia C. and Fulekar M.H. (2006)., Rhizofiltration of heavy metals from coal ash leachate., Asian Journal of Water, Environment and Pollution, 3(1), 91-94.
  49. Raskin I. and Ensley B.D. (2000)., Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment., John Wiley & Sons, Inc., New York.
  50. Meagher R.B., Rugh C.L., Kandasamy M.K., Gragson G. and Wang N.J. (2000)., Engineered Phytoremediation of Mercury Pollution in Soil and Water Using Bacterial Genes. In: Terry N and Banuelos G (Eds) Phytoremediation of Contaminated Soil and Water., Lewis Publishers, Boca Raton, FL., 201-219.
  51. United States Protection Agency (USPA). (2000)., Introduction to Phytoremediation., EPA 600/R-99/107. U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH.