6th International Virtual Congress (IVC-2019) And Workshop.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Some Insights on the Effect of Pesticides on Earthworms

Author Affiliations

  • 1Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, India
  • 2Department of Ecology and Environmental Science, Assam University, Silchar, Assam, India

Int. Res. J. Environment Sci., Volume 5, Issue (4), Pages 61-66, April,22 (2016)

Abstract

Agricultural expansion has led to an accelerated use of pesticides. However, apart from target pests, non-target organisms are also exposed to such agrochemicals. Several such non-target organisms help in the proper functioning of the soil ecosystem. Among these, earthworms need a special mention on account of the important ecosystem functions which they provide. At the same time, as earthworms always remain in close contact with the soil, they are also highly exposed to the toxicities of applied chemicals. These chemicals have numerous biochemical, physiological and morphological consequences on these organisms. But during the application of pesticides, their effects on earthworms are completely overlooked. However, if an earthworm population breaks down in a particular soil ecosystem, it is difficult to develop it again. Through the present review the hazardous impact of some commonly used pesticides on earthworms have been study elucidated and documented. It was found that chemical pesticides have several harmful impacts on these organisms.

References

  1. Mangala P., De Silva C.S., Pathiratne A. and Van Gestel C.A.M. (2009)., Influence of Temperature and Soil Type on the Toxicity of Three Pesticides to Eisenia Andrei., Chemosphere, 76, 1410-1415.
  2. De silva P.M.C.S. (2009)., Pesticide effects on earthworms: A tropical perspective, Ph.D. Thesis., Department of Ecological Science, VU University, Amsterdam, The Netherlands .
  3. Arnaud C., Saint-Denis M., Narbonne N.F., Soler P. and Ribera D. (2000)., Influences of different standardized test methods on biochemical responses in the earthworm Eisenia fetida Andrei., Soil Biol. Biochem., 32, 67-73.
  4. Fingerman M. (1984)., Pollution our enemy., Proc. Symp. Physiol. Resp. Anim. Poll., I-VI.
  5. Edwards C.A. and Bohlen P.J. (1993)., The effects of toxic chemicals on earthworms., Rev. Environ. Contam. Toxicol., 125, 23-99.
  6. Peakall D.B. (1994)., The role of biomarkers in environmental assessment (1) Introduction., Ecotoxicol., 3(3), 157-160.
  7. Van Straalen N.M. and Van Gestel C.A.M. (1998)., Soil Invertebrates and Micro-Organisms., Blackwell Science, Oxford.
  8. Paoletti M.G. (1999)., The role of earthworms for assessment of sustainability and as bioindicators., Agri. Ecosys. Env., 74, 137-155.
  9. Spurgeon D.J. and Hopkin S.P. (1999)., Seasonal variations in the abundance, biomass and biodiversity of earthworm in soil contaminated with metal emissions from a primary smelting works., J. Appl. Ecol., 36, 173-183.
  10. Lock K. and Janssen C.R. (2003)., Effect of new soil metal immobilizing agents on metal toxicity to terrestrial invertebrates., Env. Poll., 121, 123-127.
  11. Brady N.C. and Weil R.R. (2004). Elements of the Nature and Properties of Soil (Second Edition). Pearson Prentice Hall Publ., Upper Saddle River, New Jersy, USA., undefined, undefined
  12. Scott-Fordsmand J.J. and Weeks J.M. (2000). Biomarkers in earthworms. Rev. Environ. Contam. Toxicol., 165, 117-159., undefined, undefined
  13. Bustos-Oberg E. and Goicochea R.I. (2002). Pesticide soil contamination mainly affects earthworm male reproductive parameters. Asian J. Andro., 4, 195-199., undefined, undefined
  14. OECD (1984)., Guidelines for testing of chemicals. Test 207: Earthworm Acute Toxicity Test., Organization for Economic Co-operation and Development (OECD), Paris.
  15. Curry J.P., Doherty P., Purvis G. and Schmidt O. (2008)., Relationship between earthworm populations and management intensity in cattle-grazed pastures in Ireland., Appl. Soil Ecol., 39(1), 58-64.
  16. Mahajan S., Kanwar S.S. and Sharma S.P. (2007)., Longterm effect of mineral fertilizers and amendements on microbial dynamics in an alfisol of western Himalayas., Indian J. Microbiol., 47(1), 86-89.
  17. Spurgean D.J. and Hopkin S.P. (1993)., Extrapolation of the laboratory based OECD earthworm toxicity test to metal-contaminated field sites., Ecotoxicological Group, School of Animal and Microbial Sciences. University of Reading, UK.
  18. Lawrence F. and London J.R. (1997)., The role of earthworms in healthy soils., Venaura Farm- producer of Naturally Grown Vegetables, 21, 40-44.
  19. Edwards C.A. and Bohlen P.J. (1996)., Biology and ecology of earthworms., Chapman and Hall, New York, USA.
  20. Bartlett M.D., Briones M.J.I., Neilson R., Schmidt O., Spurgeon D. and Creamer R.E. (2010)., A critical review of current methods in earthworm ecology: from individuals to populations., European J. Soil Biol., 46, 67-73.
  21. Parmelee R.W., Bohlen P.J. and Blair J.M. (Eds). (1998)., Earthworm Ecology., St Lucie Press, 123-143.
  22. Zhang W.X., Chen D.M. and Zhao C.C. (2007)., Functions of earthworm in ecosystem., Biodiver. Sci., 15, 142-153.
  23. Panda S. and Sahu S.K. (1997)., Recovery of respiratory and excretory activity of Drawida willsi (Oligochaeta) following application of malathion in soil., J. Ecobiol., 9(2), 97-102.
  24. Wang X., Li H.X., Ru F. and Wang D.D. (2004)., Effects of earthworms on nitrogen leaching in wheat field agroecosyste., Acta Pedologica Sinica., 41, 987-990.
  25. Bohlen P.J., Edwards W.M. and Edwards C.A. (1995)., Earthworm community structure and diversity in experimental agricultural watershed in Northeastern Ohio., J. Plant and Soil, 170(1), 233-239.
  26. Tisdall J.M. and Mckenzie B.M. (1999)., Correlation between earthworm and plant growth., Biol. Fertility Soils, 30, 1-2.
  27. Garg V.K., Chand S., Chhillar A. and Yadav A. (2005)., Growth and reproduction of Eisenia foetida in various animal wastes during vermicomposting., Appl. Ecol. Env. Res., 3(2), 51-59.
  28. Domı´nguez J. (2004)., State of the art and new perspectives on vermicomposting research, In Earthworm Ecology (Second Edition) (Ed. C.A. Edwards)., CRC Press, Boca Raton, Florida, 401-424.
  29. Belfroid A., Meiling J., Sijm D., Hermens J., Seinen W. and Van Gestel K. (1994)., Uptake of hydrophobic halogenated aromatic hydrocarbons from food by earthworms (Eisenia andrei)., Arch. Environ. Contam. Toxicol., 27, 260-265.
  30. Yasmin S. and D’Souza D. (2010)., Effects of pesticides on the growth and development of earthworm: A review., Appl. Env. Soil Sci., 20, 1-9.
  31. Solaimalai A., Ramesh R.T. and Baskar M. (2004)., Pesticides and environment., Env. Contam. Bioreclam., 7, 345-382.
  32. Schreck E., Geret F., Gontier L. and Treihou M. (2008)., Neurotoxic effect and metabolic responses induced by a mixture of six pesticides on the earthworm Aporrectodea caliginosa noctuma., Chemosphere, 71, 1832-1839.
  33. Lakhani L., Khatri A. and Choudhary P. (2012)., Effect of dimethoate on testicular histomorphology of the earthworm Eudichogaster kinneari (Stephenson)., Int. Res. J. Biol. Sc., 1(4), 77-80.
  34. Mosleh Y.Y. and Paris-Palacios S. (2003)., Couderchet M. and Vernet G., Acute and sublethal effects of two insecticides on earthworm (Lumbricus terristris L.) under conditions., Env. Toxicol., 18, 20-26.
  35. Hans R.K., Chan M.A., Farooq M. and Beg M.U. (1993)., Glutathione-Stransferase activity in the earthworms, Pheretima posthuma exposed to three insectides., Soil Biol. Biochem., 25(4), 509-511.
  36. Callahan C.A., Shirazi M.A. and Neuhauser E.F. (1994)., Comparative toxicity of chemicals to earthworms., Eisenia fetida. Environ. Toxicol., 13(2), 291-298.
  37. Kuo T. and Huang Y.K. (1993)., Lethal effects of five commonly used pesticides on the earthworm Bimastus parvus eiser., J. Agri. Assoc. China New Ser., No. 162, 33-42.
  38. Spurgeon D.J., Hopkin S.P. and Jones D.T. (1994)., Effects of cadmium copper, lead and zinc on growth, reproduction and survival of the earthworm Eisenia foetida (Savigny)., Environ. Poll., 84(2), 123-130.
  39. Booth L.H., Heppelthwaite V.J. and O, Growth, development and fecundity of the earthworm Aporrectodea caliginosa after exposure to two organophosphates., New Zealand Plant Protection, 53, 221-225.
  40. Edwards C.A. (1987)., The environmental impact of insecticides. In Integrated pest management (Ed. V. Delucchi)., International Perspective Parasitis, Geneva, Switzerland, 309-329.
  41. Reinecke S.A. and Reinecke A.J. (2007)., The impact of organophosphate pesticides in orchards on earthworms in the Western Cape, South Africa., Ecotoxicity and Env. Safety, 66, 244-251.
  42. Finney D.J. (1971)., Probit Analysis (Third Edition)., Cambridge University Press, London.
  43. Rallmbke J., Jaonsch S., Junker T., Pohl B., Scheffezyk A. and Schallnaay H.J. (2007)., The effect of tributyltin-oxide on earthworm, springtails and plants in artificial and natural soils., Ach. Env. Contam. Toxicol., 52(4), 525-534.
  44. Langan A.M. and Shaw E.M. (2006)., Response s of the earthworm Lumbricus terrestris (L.) to iron phosphate and metaldehyde slug peelet formulations., Appl. Soil Ecol., 34 (2-3), 184-189.
  45. Lydy M.J. and Linck S.L. (2003)., Assessing the impact of triazine herbicide on organophosphate insecticide toxicity to the earthworm Eisenia fetida., Arch. Env. Contam. Toxicol., 45(3), 343-349.
  46. Kalka J., Miksch K., Grabinska-Sota E. and Zbrog A. (2002)., The effects of pyrethroid insecticides on earthworm Eisenia fetida., Fresenius Env. Bull., 11(2), 114-117.
  47. Ribera D., Narbonne J.F., Arnaud C. and Saint-Denis M. (2001)., Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil, effect of carbaryl., Soil Biol. Biochem., 33(7-8), 1123-1130.
  48. Morowati M. (2000)., Histochemical and histopathological study of the intestine of the earthworm (Pheretima elongate) exposed to a field dose of the herbicide glyphosate., The Environmentalist., 20(2), 105-111.
  49. Panda S. and Sahu S.K. (1999)., Effects of malathion on the growth and reproduction of Drawida willsi (Oligochaeta) under laboratory conditions., Soil Biol. Biochem., 31, 363-366.
  50. Patnaik H.K. and Dash M.C. (1990)., Toxicity of monocrotophos and fenitrothion to four common Indian earthworm species., Poll. Residue, 9, 95-99.
  51. Capowiez Y., Rault M., Costagliolia G. and Mazzia C. (2005)., Lethal and sublethal effects of imidacloprid on two earthworm species (Aporrectodea nocturna and Allolobophera icterica)., Biol. Fertility Soils. 41(3), 135-143.
  52. Capowiez Y., Bastardie F. and Costagliolia G. (2006)., Sublethal effects of Imidacloprid on burrowing behaviour of two earthworm species: Modification of the 3D burrow systems in artificial cores and consequences on gas diffusion in soil., Soil Biol. Biochem., 38(2), 285-293.
  53. Potter D.A. (1990)., Toxicity of pesticides to earthworms and effect on thatch degradation in Kentucky Blue grass turf., J. Economic Entomol., 3, 2362-2369.
  54. Jemec A., Tisler T., Drobne D., Sepcic K., Fournier D. and Trebse P. (2007)., Comparative toxicity of imidacloprid, its commercial liquid formulation and of diazinon to non-target arthropod, the microcrustacean Daphnia magna., Chemosphere, 68(8), 1408-1418.
  55. Panda S. and Sahu S.K. (2004)., Recovery of acetylcholine esterase activity of Drawida willsi (Oligochaeta) following application of three pesticides to soil., Chemosphere, 55(2), 283-290.
  56. Clarke E.G.C and Clarke M.L. (1975)., Veterinary toxicology (First Edition)., Cassell and Collier, Macmillan Publishers, London, UK.
  57. O Brien R.D. (1967), Insectides: Action and metabolis., Academic Press, London and New York.
  58. O Brien R.D. (1960), Toxic Phosphorous Esters: Chemistry, Metabolism and Biological effects., Academic Press, New York, USA.
  59. Kulkarni S.G. and Wakale A.S. (2012)., Determination of LC50 of the Monocrotophos (Organophosphate) Pesticide on Indian Earthworm, Lampito mauritii., Int. J. of Basic and Appl. Res., 2, 110-121.
  60. Ravensdown Safety Datasheet. (2012)., http://www.ravensdown.co.nz/SafetyDatasheets/rogor-sds.pdf., Accessed on 02/06/2015.
  61. Bantu N. and Vakita R. (2013)., Effect of Dimethoate on mortality and Biochemical changes of Freshwater fish Labeo rohita (Hamilton)., J. Biol. Today
  62. Nagaraju B. and Rathnamma V. (2013)., Effect of dimethoate on mortality and biochemical changes of freshwater fish Labeo rohita (Hamilton)., J. Biol. Today
  63. Ganeshwade R.M. (2012)., Biochemical changes induced by dimethoate (Rogor 30% EC) in the gills of fresh water fish Puntius ticto (Hamilton)., J. Ecol. Nat. Env., 4(7), 181-185.
  64. Borah S. and Yadav R.N.S. (1995)., Alteration in the protein, free amino acid, nucleic acid and carbohydrate content of muscle and gills in rogor exposed freshwater fish Heteropneustes fossilis., Res. Pol., 14(1), 99-103.
  65. Orr G.L. and Doner R.G.H. (1982)., Effect of lindane (Thexachlorocyclohexane) on carbohydrate and lipid reserve in the American Cockroach, Periplaneta americana L., Pesticide Biochem. Physiol., 17, 89-95.
  66. Pal A. and Patidar P. (2014)., Effect of insecticide malathion on weight of Eisenia foetida earthworm., AISECT Univ. J., 3(5), 1-3.
  67. Van Gestel C.A.M. and Ma W.C. (1988)., Toxicity and bioaccumulation of chlorophenols in earthworms, in relation to bioavailability in soil., Ecotoxicol. Environ. Safety, 15, 289-297.
  68. Römbke J. (2007)., Garcia M.V. and Scheffczyk A., Effects of the fungicide benomyl on earthworms in laboratory tests under tropical and temperate conditions., Arch. Env. Contam. Toxicol., 53(4), 590-598.
  69. Hackenberg D. (2007)., Letter from David Hackenberg to American growers., Plattform Imkerinnen, Austria.