6th International Virtual Congress (IVC-2019) And Workshop.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Heavy metal accumulation in Pterisvittata L. growing on Abandoned Lime Kiln and Abandoned Coal Stockpile of Meghalaya, India

Author Affiliations

  • 1Department of Environmental Studies, North-Eastern Hill University, Shillong-793022, India
  • 2Department of Botany, Tripura University, Agartala-799130, India
  • 3Department of Zoology, Shillong College, Shillong-793003, India
  • 4Department of Environmental Studies, North-Eastern Hill University, Shillong-793022, India

Int. Res. J. Environment Sci., Volume 5, Issue (11), Pages 41-46, November,22 (2016)

Abstract

The objective of the study was to assess the ability of P. vittata to accumulate Arsenic (As) from a mixed heavy metals soil contaminations in the Abandoned Lime Kiln (ALK) and Abandoned Coal Stockpile (ACS). The results showed that metal concentrations in the soil are of descending order Ca>Fe>Mg>Se>As>Na>Mn>Zn >Pb>Cu>Cr>Ni>Co in ALK and Fe>Mg>Zn>Mn>Se>Na> As>Ca>Pb>Cu>Ni=Cr>Co in ACS. As concentration in the soils of these two study sites have a relatively low As content and P. vittata could efficiently accumulates As to its roots and fronds parts from soils with low As concentration. An Enrichment Coefficient (EC) and Translocation Factor (TF) indicate a plant’s ability for phytoremediation. The EF value of Co, Zn, Ni, Ca, Mg, Se, As, and Na was found to have an EF value greater than 1 which can be considered that P. vittata as a good accumulator of these metals in a mixed metals soil contamination. The TF values >1 was found for As, Pb, Mn, Fe, Se, Ni, Zn, Na, Co and Mg which indicates that P. vittata was efficient to accumulate more than one metal and translocate metals from soil to shoots. As-phytoremediation efficiency of P. vittata in a mixed metals soil contamination may be influence by the presence of other metals like Ca, Fe, Se, Mg, and Cu in the soil.

References

  1. Sayyed M.R.G. and Sayadi M.H. (2011)., Variations in the heavy metal accumulations within the surface soils from the Chitgar industrial area of Tehran., Proc Int Acad Ecol Environ Sci., 1(1), 36-46.
  2. Sal D.E., Smith R.D. and Raskin I. (1998)., Phytoremediation., Ann Rev Plant Physiol Plant Mol Bio., 49,643-668.
  3. Prasad M.N.V. and Freitas H. (2003)., Metal hyper accumulation in plants- Biodiversity prospecting for phytoremediation technology., Electron J Biotechnol., 6, 285-321.
  4. Sun Y., Zhou, Q. and Diao C. (2008)., Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L., Bioresour Technol., 9(5), 1103-1110.
  5. Yanqun Z., Yuan L., Jianjun T.C., Haiyan C., Li Q. and Schvartz C. (2005)., Hyper accumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China., Environ Int., 31, 755-762.
  6. Baker A.J.M., Reeves R.D. and Mcgrath S.P. (1991)., In situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants-a feasibility study., R.E. Hinchee and R.F. Olfenbuttel (eds), In situ bioreclamation, Elsevier Inc. USA, 539-544, ISBN: 978-0-7506-9301-1.
  7. Zhou Q.X. and Song Y.F. (2004)., Principles and methods of contaminated soil remediation., Science Press, Beijing, pp 568.ISBN:978-7030125170.
  8. Barcelo J. and Poschenrieder C. (2003)., Phytoremediation: Principles and Perspectives., Contrib Sci., 2, 333-334.
  9. Ma L.Q., Komar K.M., Tu C., Zhang W., Cai Y. and Kennelley E.D. (2001)., A fern that hyperaccumulates arsenic., Nature, 409, 579.
  10. Chen T., Wei C., Huang Z., Huang Q., Lu Q. and Fan Z. (2002)., Arsenic hyper accumulator., Pteris Vittata L. and its arsenic accumulation.
  11. Srivastava M., Ma L.Q. and Cotruvo J. (2005)., Uptake and distribution of selenium in different fern species., Int J Phytorem., 7, 33-42.
  12. Gonzaga M.I.S., Santos J.A.G. and Ma L.Q. (2006)., Arsenic chemistry in the rhizhsphere of Pterisvittata L. and Nephrolepisexaltata L.: arsenic fractionations and plant arsenic uptake., Environ Pollut., 143, 254-260.
  13. Marbaniang D., Das P. and Chaturvedi S.S. (2014)., Assessment of Heavy Metal Pollution in Abandoned Coal Stockpile and Lime Kiln of Meghalaya using Pollution Load Index (PLI) and Geoaccumulation Index (I-Geo)., Int J Sci Res., 3(9), 886-892.
  14. Kara Y. and Zeytunluoglu A. (2007)., Bioaccumulation of Toxic Metals (Cd and Cu) by Groenlandiadensa (L.). Fourr., Bull Environ Contam Toxicol., 79, 609-612.
  15. Zhao F.J., Lombi E. and McGrath S.P. (2003)., Assessing the potential for zinc and cadmium hytoremediation with the hyperaccumulator Thlaspicaerulescens., Plant Soil., 249, 37-43.
  16. Deng H., Ye Z.H. and Wong M.H. (2004)., Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal contaminated sites in China., Environ Pollut., 132, 29-40.
  17. Wei C.Y., Wang C., Sun X. and Wang W.Y. (2006)., Arsenic accumulation by ferns: a field survey in southern China., Environ Geochem Health., 29(3), 169-77.
  18. Caille N., Swanwick S., Zhao F.J. and McGrath S.P. (2004)., Arsenic hyperaccumulation by Pterisvittata from arsenic contaminated soils and the effect of liming and phosphate fertilization., Environ Pollut., 132, 113-120.
  19. Fayiga A.O., Ma L.Q., Cao R.X. and Rathinasabapathi B. (2004)., Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pterisvittata L., Environ Pollut., 132, 289-296.
  20. Tu C. and Ma L.Q. (2005)., Effects of arsenic on concentration and distribution of nutrients in the trends of the darsenichyperaculator Pterisvittata L., Environ Pollut., 135(2), 333-340.
  21. Kumari A., Lal B., Pakade Y.B. and Chand P. (2011)., Assessment of bioaccumulation of heavy metal by Pterisvittata L. growing in the vicinity of fly ash., Int J Phytorem., 13(8), 779-87.
  22. Wei C.Y., Sun X., Wang C. and Wang W.Y. (2006)., Factors influencing arsenic accumulation by Pterisvittata L.: A comparative field study at two sites., Environ Pollut., 141, 488-493.
  23. Fitz W.J., Wenzel W.W., Zhang H., Nurmi J., Stipek K., Fischerova Z., Schweiger P., Kollensperger G., Ma L.Q. and Stingeder G. (2003)., Rhizosphere characteristics of the arsenic hyperaccumulator Pterisvittata L. and monitoring of phytoremoval efficiency., Environ Sci Technol., 37, 5008-5014.
  24. Khattak R.A., Page A.L., Parker D.R. and Bakhtar D. (1991)., Accumulation and interactions of arsenic, selenium, molybdenum and phosphorus in Alfalfa., J Environ Qual., 20, 165-168.
  25. Feng R., Wei C., Tua S. and Sun X. (2009)., Interactive effects of selenium and arsenic on their uptake by Pterisvittata L. under hydroponic conditions., Environ Exp Bot., 65, 363-368.
  26. Jones D.L. (1987)., Encyclopedia of ferns: An introduction to ferns, their structure, biology, economic importance, cultivation and propagation., Lothian Publishing Company, Australia, 433, ISBN :0850911796
  27. Tu C. and Ma L.Q. (2002)., Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator Ladder Brake., J. Environ. Qual., 31, 641-647.
  28. Singh R., Singh D.P., Kumar N., Bhargava S.K. and Barman S.C. (2010)., Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area., J Environ Biol., 31, 421-430.
  29. Malik R.N., Husain S.Z. and Nazir I. (2010)., Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan., Pak. J. Bot., 42(1), 291-301.
  30. Fayiga A.O. and Ma L.Q. (2006)., Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pterisvittata L., Sci Total Environ., 359, 17-25.
  31. Farnese F.S., Oliveir, J.A., Farnese M.S., Gusman G.S., Silveir N.M. and Siman L.I. (2014)., Uptake arsenic by plants: Effects on mineral nutrition, growth and antioxidant capacity., Idesia, 32(1), 99-106.
  32. Poter P.K. and Peterson P.J. (1975)., As accumulation by plants on mine wastes (United Kingdom)., Sci Total Environ., 4, 365-371.
  33. Reed S.T., Silva T.A., Dunn C.B. and Gordon G.G. (2015)., Effects of Arsenic on Nutrient Accumulation and Distribution in Selected Ornamental Plants., Agric Sci., 6, 1513-1531.
  34. Marschner H. (1995)., Mineral Nutrition of Higher Plants., Academic Press, UK, 889, ISBN: 978-0-12-473542-2
  35. Islam M.K., Khanam M.S., Lee S.Y., Waghmode T.R., Alam I. and Huh M.R. (2015)., Interactive effects of arsenic and chromium stresses on mineral and metal uptake in jute (Corchorusolitorius L.)., Plant Omics J., 8(3), 220-231.