International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Carbon Dioxide driven Solar-assisted Heat Pump Water Heating System: A Theoretical Analysis

Author Affiliations

  • 1 Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58108, USA

Int. Res. J. Environment Sci., Volume 2, Issue (10), Pages 77-92, October,22 (2013)

Abstract

Details of the analytical studies of a CO transcritical cycle on a solar assisted heat pump water heating system is presented in this paper. The main components of this system include an evacuated tube U-pipe solar collector serving as the evaporator for the R744 (CO) refrigerant, a variable speed reciprocating compressor, an immersed heat exchanger and an expansion valve. In general, solar heat pumps are known to provide higher values of COP since solar radiation can easily effect higher evaporation temperatures. However, incompatible weather conditions may affect the performance of heat pump, and hence an optimization of such system is essential which is dictated by the dominant operating parameters, such as: solar radiation, solar collector area, speed of the compressor, evaporating and condensing temperatures. A numerical model has been developed to optimize the system design and operating parameters. The developed simulation model can predict the performance of the system COP, solar collector efficiency and heat capacity. For the North Dakota USA weather conditions, the average COP range from 2-3 with solar collector efficiencies of about 40%-60% and temperature of the storage tank water range between 30º-45ºC.

References

  1. The Kyoto Protocol to the United Nations Framework Convention on Climate Change, 1997. Accessed online: http://untreaty.un.org/cod/avl/ha/kpccc/kpccc.html&#x-3.3;夀 (2013)
  2. Freeman T. L., Mitchell J. W., Audit T. E., Performance of combined solar - heat pump systems, Solar Energy, 22(2), 125-35 (1979)
  3. Macarthur J. W., Theoretical analysis of the dynamic interactions of vapor compression heat pumps, Energy Conversion and Management, 24(1), 49-66 (1984)
  4. Duffie J. A., Beckman W. A., Solar Engineering of Thermal Processes, second edition, Willey, New York, (1991)
  5. Kaygusuz K., Gultekin N., Ayhan T., Solar-assisted heat pump and energy storage for domestic heating in Turkey, Energy Conversion and Management, 34(5), 335-46 (1993)
  6. Axaopoulos P., Panagakis P., Kyritsis S., Experimental comparison of a solar-assisted heat pump vs. a conventional thermosyphon solar system, International Journal of Energy Research, 22(13), 1107-20 (1998)
  7. Chaturvedi S. K., Abazeri M., Transient simulation of a capacity-modulated, direct-expansion, solar-assisted heat pump, Solar Energy39(5), 421-28 (1987)
  8. Chaturvedi S. K., Chen D. T., Kheireddine A., Thermal performance of a variable capacity direct expansion solar-assisted heat pump, Energy Conversion and Management, 39(3-4), 181-91 (1998)
  9. Hawlader M. N. A., Chou S. K., Ullah M. Z., The performance of a solar assisted heat pump water heating system, Applied Thermal Engineering, 21(10), 1049-65 (2001)
  10. Huang B. J., Chyng J. P., Performance characteristics of integral type solar-assisted heat pump, Solar Energy, 71(6), 403-14 (2001)
  11. Morrison G. L., Simulation of packaged solar heat-pump water heaters, Solar Energy, 53(3), 249-57 (1994)
  12. Antoni M. D., Saro O., Massive Solar-Thermal Collectors: A critical literature review, Renewable and Sustainable Energy Reviews, 16(6), 3666-79 (2012)
  13. Mills D., Advances in solar thermal electricity technology, Solar Energy, 76(1-3), 19-31 (2004)
  14. Kalogirou S. A., Solar thermal collectors and applications, Progress in Energy and Combustion science, 30(3), 231-95 (2004)
  15. Kim Y., Seo T., Thermal performances comparisons of the glass evacuated tube solar collectors with shapes of absorber tube, Renewable Energy, 32(5), 772-95 (2007)
  16. Ma L., Lu Z., Zhang J., Liang R., Thermal performance analysis of the glass evacuated tube solar collector with U-tube, Building and Environment, 45(9), 1959-67 (2010)
  17. Zhang X. R., Yamaguchi H., Uneno D., Fujima K.,Enomoto M., Sawada N., Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide, Renewable Energy, 31(12), 1839-54 (2006)
  18. Zhang X. R., Yamaguchi H., Fujima K., Enomoto M., Sawada N., Study of solar energy powered transcritical cycle using supercritical carbon dioxide, International Journal of Energy Research, 30(14), 1117-29 (2006)
  19. Yamaguchi H., Zhang X. R., Fujima K., Enomoto M., Sawada N., Solar energy powered Rankine cycle using supercritical CO, Applied Thermal Engineering, 26(17-18) , 2345-54 (2006)
  20. Yamaguchi H., Sawada N., Suzuki H., Ueda H., Zhang X. R., Preliminary study on a solar water heater using supercritical carbon dioxide as working fluid, Journal of Solar Energy Engineering, 132(011010), 1-6 (2010)
  21. Zhang X. R., Yamaguchi H., Forced convection heat transfer of supercritical CO in a horizontal circular tube, Journal of Supercritical Fluids, 41(3), 412-20 (2007)
  22. Zhang X. R., Yamaguchi H., An experimental study on evacuated tube solar collector using supercritical CO, Applied Thermal Engineering, 28(10), 1225-33 (2008)
  23. Kim M. H., Pettersen J., Bullard C. W., Fundamental process and system design issues in CO vapor compression systems, Progress in Energy Combustion Science, 30(2), 119-74 (2004)
  24. Lorentzen G., Trans-critical vapour compression cycle device. International Patent Publication, Patent No. WO 90/07683 (1990)
  25. Lorentzen G., Pettersen J., A new, efficient and environmentally benign system for car air-conditioning, International Journal of Refrigeration, 16(1), 4-12 (1993)
  26. Oritz T. M., Li D., Groll E. A., Evaluation of the performance potential of CO as a refrigerant in air-to-air air conditioners and heat pumps: Systems modeling and analysis, ARTI 2003, Final report (2003)
  27. Tamura T., Yakumaru Y., Nishiwaki F., Experimental study on automotive cooling and heating air conditioning system using CO as a refrigerant, International Journal of Refrigeration, 28(8), 1302-07 (2005)
  28. Kim M. H., Pettersen J., Bullard C. W., Fundamental process and system design issues in CO vapor compression systems, Progress in Energy Combustion Science, 30(2), 119-74 (2004)
  29. Kim S. G., Kim Y. J., Lee G., Kim M. S., The performance of a transcritical CO cycle with an internal heat exchanger for hot water heating, International Journal of Refrigeration, 28(7), 1064-72 (2005)
  30. Neksa P., Rekstad H., Zakeri G. R., Schiefloe P. A., COheat pump water heater: characteristics, system design and experimental results, International Journal of Refrigeration, 21(3), 172-79 (1998)
  31. Neksa P., CO heat pump systems, International Journal of Refrigeration, 25(4), 421-27 (2002)
  32. Laipradit P., Tiansuwan J., Kiatsiriroat T., Aye L., Theoretical performance analysis of heat pump water heaters using carbon dioxide as refrigerant, International Journal of Refrigeration, 32(4), 356-66 (2008)
  33. Cecchinato L., Corradi M., Fornasieri E., Zamboni L., Carbon dioxide as refrigerant for tap water heat pumps: A comparison with the traditional solution, International Journal of Refrigeration, 28(8), 1250-58 (2005)
  34. Stene J., Residential CO heat pump system for combined space heating and hot water heating, International Journal of Refrigeration, 28(8), 1259-65 (2005)
  35. Richter M. R., Song S. M., Yin J. M., Kim M. H., Bullard C. W., Hrnjak P. S., Experimental results of transcritical CO heat pump for residential application, Energy, 28(10), 1005-19 (2003)
  36. Tian Q., Thermal performance of the U-type evacuated glass tubular solar collector, Building Energy and Environment, 26(3), 51-54 (2007)
  37. Chaturvedi S. K., Chiang Y. F., Roberts A. S., Analysis of two-phase flow solar collectors with application to heat pumps, Journal of Solar Energy Engineering, 104(4), 358-65 (1982)
  38. Oritz T. M., Li D., Groll E. A., Evaluation of the performance potential of CO as a refrigerant in air-to-air air conditioners and heat pumps: System modeling and analysis, Final Report, ARTI , (2003)
  39. Petukhov B. S., Heat transfer and friction in turbulent pipe flow with variable physical properties, Advances in Heat Transfer, 503-64 (1970)
  40. Farrington R. B., Bingham C. E., Testing and analysis of load-side immersed heat exchangers for solar domestic hot water systems, Technical Report (SERI/TR-254-3094), Solar Energy Research Inst., Golden, CO (USA) (2013)
  41. North Dakota State Climate Office. North Dakota Annual Average Temperature. Accessed online: http://www.ndsu.edu/ndsco/temp/monthly/2010.html&#x-3.3;女 (2013)