6th International Virtual Congress (IVC-2019) And Workshop.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Mycorrhizae and Phytochelators as Remedy in Heavy Metal Contaminated Land Remediation

Author Affiliations

  • 1 Amity Institute of Biotechnology, Amity University, Viraj Khand-5, Gomtinagar, Lucknow, UP, INDIA
  • 2

Int. Res. J. Environment Sci., Volume 2, Issue (1), Pages 74-78, January,22 (2013)


Phytoremediation is the direct use of living plants for in situ remediation of contaminated soil, sludges, sediments, and ground water through contaminant removal, degradation, or containment. Growing and, in some cases, harvesting plants on a contaminated site as a remediation method is an aesthetically pleasing, solar-energy driven, passive technique that can be used to clean up sites with shallow, low to moderate levels of contamination. This technique can be used along with or, in some cases, in place of mechanical cleanup methods. Phytoremediation can be used to clean up metals, pesticides, solvents, explosives, crude oil, polycyclic aromatic hydrocarbons, and landfill leachates. This sustainable and inexpensive process is emerging as a viable alternative to traditional contaminated land remediation methods. To enhance phytoremediation as a viable strategy, fast growing plants with high metal uptake ability and rapid biomass gain are needed. This paper provides a brief review of studies in the area of phytoaccumulation, most of which have been carried out in U.P. Particular attention is given to the role of phytochelators in making the heavy metals bio-available to the plant and their symbionts in enhancing the uptake of bio-available heavy metals.


  1. Shuman L.M., Fractionation method for soil micro-elements, Soil Science,140(1), 11 (1985)
  2. Kabata-Pendias A. and Pendias H., Trace Elements in Soils and Plants, 2nd Ed. CRC Press, Boca Raton, FL(1992)
  3. Kabata-Pendias A. and Pendias H., Trace Elements in the Soil and Plants, CRC Press, Boca Raton, FL(1989)
  4. Bingham F.T., Pereyea F.J. and Jarrell W.M., Metal toxicity to agricultural crops, Metal Ions Biol. Syst., 20,119 (1986)
  5. Foy C.D., Chaney R.L. and White M.C., The physiology of metal toxicity in plants, Annu. Rev. Plant Physiol. 29(1), 511 (1978)[doi:10.1146/annurev.pp.29.060178.00 2455]
  6. McGrath S.P., Chaudri A.M and Giller K.E., Long-term effects of metals in sewage sluge on soils, microorganisms and plants. J. Ind. Microbiol.,14(2), 94 (1995)[doi:10.1007/BF01569890]
  7. Sanità di Toppi L. and Gabrielli R., Response to cadmium in higher plants. Environ. Exp. Bot., 41(2), 105 (1999) [doi:10.1016/S0098-8472(98)00058-6]
  8. McGrath S.P., Effects of Heavy Metals from Sewage Sludge on Soil Microbes in Agricultural Ecosystems, In: Ross, S.M. (Ed.), Toxic Metals in Soil-Plant Systems. Wiley, New York, 247-273 (1994)
  9. Garbisu C. and Alkorta I., Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment, Bioresour, Technol. 77(3), 229 (2001) [doi:10.1016/S0960-8524(00)00108-5]
  10. Chaney R.L., BrownLi S.L., Y.M., Angle J.S., Stuczynski T.I., Daniel W.L., Henry C.L., Siebelec G., Malik M. and J.A. Ryan M., et al.,. Progress in Risk Assessment for Soil Metals, and In-situ Remediation and Phytoextraction of Metals from Hazardous Contaminated Soils, US-EPA Phytoremediation: State of Science, 2000 May 1, Boston, MA (2000)
  11. Cheng S., Grosse W., Karrenbrock F. and Thoennessen M., Efficiency of constructed wetlands in decontamination of water polluted by heavy metals, Ecol. Eng., 18(3), 317 (2002) [doi:10.1016/S0925-8574(01)00091-X]
  12. Lasat H.A., Phytoextraction of toxic metals: a review of biological mechanisms, J. Environ. Qual.,31(1), 109 (2002)
  13. Hinchman R.R., Negri M.C. and Gatliff E.G., “Phytoremediation: using green plants to clean up contaminated soil, groundwater, and wastewater,” Argonne National Laboratory Hinchman, Applied Natural Sciences, Inc (1995) http://www. treemediation. Com /Technical/Phytoremediation_1998.pdf
  14. Mwegoha W.J.S., The use of phytoremediation technology for abatement soil and groundwater pollution in Tanzania: opportunities and challenges, J. of Sust. Dev. in Africa,10(1), 140 (2008)
  15. U.S. Environmental Protection Agency, Introduction to Phytoremediation, National Risk Management Research Laboratory, EPA/600/R-99/107, (2000), http://www.clu-in.org/download/remed/introphyto.pdf.
  16. Salido A.L., Hasty K.L., Lim J.M. and Butcher D.J. Phytoremediation of arsenic and lead in contaminated soil using Chinese Brake ferns (Pteris vittata) and Indian mustard (Brassica juncea), Int. J. of Phytorem., 5( 2), 89 (2003)
  17. Harrier L.A. and Sawczak J. Detection of the 3phosphoglycerate kinase protein of Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe, Mycorrhiza, 10,81 (2000)
  18. Hildebrandt U., Regvar M. and Bothe H., Arbuscular mycorrhiza and heavy metal tolerance, Phytochem,68, 139 (2007)
  19. Huang X.D., El-Alawi Y., Penrose D.M., Glick B.R. and Greenberg B.M., Responses of Three Grass Species to Creosote During Phytoremediation, Environ. Pollut, 130, 453 (2004)
  20. Huang X.D., El-Alawi Y., Gurska J., Glick B.R. and Greenberg B.M., A Multi-Process Phytoremediation System for Decontamination of Persistent Total Petroleum Hydrocarbons from Soils, Microchem. J., 81, 139 (2005)
  21. Narasimhan K., Basheer C., Bajic V.B. and Swarup S., Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls, Plant Physiol, 132, 146 (2003)
  22. Glick B.R., Phytoremediation: synergisticuse of plants and bacteria to clean up the environment, Biotechnol. Adv., 21, 383 (2003)
  23. Glick B.R., Using soil bacteria to facilitate phytoremediation, Biotechnol. Adv., 28, 367 (2010)
  24. Leyval C., Turnau K. and Haselwandter K., Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects, Mycorrhiza, 7, 139 (1997)
  25. Khodaverdiloo H. and Homaee M., Modeling phytoremediation of Cd and Pb from contaminated soils using plant transpiration reduction functions, Iranian J. Irrig. Drain., 2(1), 7 (2008)
  26. Khodaverdiloo H. and Homaee M., Modeling of Cadmium and Lead Phytoextraction from Contaminated Soils, Soil Sci., 41 (2), 149 (2008)
  27. Davari M., Homaee M. and Khodaverdiloo H., Modeling Phytoremediation of Ni and Cd from Contaminated Soils Using Macroscopic Transpiration Reduction Functions, J. Sci. Technol. Agric. Natural. Resour. Water Soil Sci., 14(52), 75 (2010)
  28. Shah F.R., Ahmad N., Masood K.R., Peralta-Videa J.R. and Ahmad F.D., Heavy Metal Toxicity in Plants. In: Plant Adaptation and Phytoremediation. (M. Ashraf · M. Ozturk · M.S.A. Ahmad, Eds.) Springer Dordrecht HeidelbergLondon New York. 71 (2010)
  29. Burd G.I., Dixon D.G. and Glick B.R., Plant growth-promotingbacteria that decrease heavy metal toxicity in plants, Can. J. Microbiol., 46, 237 (2000)
  30. Burd G.I., Dixonand D.G. and Glick B.R., A plant growth-promoting bacterium that decreases nickel toxicity in seedlings, Appl. J. Environ Microbiol,64, 3663 (1998)
  31. Belimov A.A., Hontzeas N., Safronova V.I., Demchinskaya S.V., Piluzza G, Bullitta S. and Glick B.R., Cadmium-tolerant plant growth- promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.), Soil Biol. Biochem,37, 241(2005)
  32. Stearns J.C., Shah S., Greenberg B.M., Dixon D.G. and Glick B.R., Tolerance of transgenic canola expressing 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by nickel, Plant Physiol. Biochem, 43, 701 (2005)
  33. Simon L.K., Bousquet J., Levesque R.C. and Lalonde M., Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants, Nature, 363(6424),67 (1993)[doi:10.1038/363067a0]
  34. Kaldorf M., Kuhn M., Schroder W.H., Hildebrandt U. and Bothe H., Selective element deposits in maize colonized by a heavy metal tolerance conferring arbus-cular mycorrhizal fungus, J. Plant Physiol, 154, 195 (1999)
  35. Turnau K., Heavy metal content and localization in mycorrhizal Euphorbia cyparissias from zinc wastes in Southern Polland, Act. Soc. Bot. Pol., 67, 105 (1998)
  36. Zhou J.L., Zn biosorption by Rhizopus arrhizus and other fungi. App. Microbiol. Biotechnol,51(5), 686 (1999) [doi:10.1007/s002530051453]
  37. Wright S.F. and Upadhyaya A., A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil,198(1), 97 (1998)[doi:10.1023/A:1004347701584]
  38. Gonzalez-Chavez C., D’Haen J., Vangronsveld J.J. and Dodd J.C., Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil, Plant and Soil, 240(2), 287 (2002) [doi:10.1023/A:10157946 22592]
  39. Margoshes M. and Vallee B. L., J. Am. Chem. Soc., 79, 4813 (1957)
  40. Singh R.P., Tripathi R.D., Sinha S.K., Meheshwari R. and Srivastava H.S., Responses of higher plants to lead contaminated environment, Chemosphere,34, 2467 (1997)
  41. Klapheck S., Fliegner W. and Zimmer I., Hydroxymethyl-phytochelatins [(c-glutamylcysteine)(N)-serine] are metal induced peptides in the Poaceae, Plant Physiol,104, 1325 (1994)
  42. Keltjnes W.G. and Vanbeusichem M.L., Phytochelatins as biomarkers for heavy metal toxicity in maize – single metal effects of copper and cadmium, J. Plant Nutri,21, 635 (1998)
  43. Baird C., Environmental Chemistry. W.H. Freeman. New York (1997)
  44. Marschner H., Mineral Nutrition of Higher Plants (2ndEdn), Academic Press, London (1995)
  45. Walter A., Romheld V., Marschner H. and Mori S., Is the release of phytosiderophores in zinc-deficient water plants a response to impaired iron utilization, Physiol. Pl., 92, 493 (1994)
  46. Marschner H. and Romheld V., Strategies of plants for acquisition of iron, Plant Soil,165, 262 (1995)
  47. Zhang F.S., Romheld V. and Marschner H., Diurnal rhythm of release of phytosiderophores and uptake rate of zinc in iron-deficient wheat, Plant Nutri,37, 671 (1991)
  48. Graham M.J., Nickell C.D., and Hoeft R.G., Effect of manganese deficiency on seed yield of soybean cultivars, J. Plant Nutri,17, 1333 (1994)
  49. Rauser W.E., Phytochelatins, Ann. Rev. Biochem, 59, 61 (1990)