International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Prediction of daily global solar radiation using different empirical models at eastern subtropical region, Nepal

Author Affiliations

  • 1Department of Mechanical Engineering, IOE Pulchowk Campus, TU, Nepal
  • 2Department of Mechanical Engineering, IOE Pulchowk Campus, TU, Nepal
  • 3Department of Mechanical Engineering, IOE Pulchowk Campus, TU, Nepal
  • 4Department of Physics, Patan Multiple Campus, TU, Nepal
  • 5Department of Applied Sciences and Chemical Engineering, IOE Pulchowk Campus, TU, Nepal

Int. Res. J. Environment Sci., Volume 10, Issue (1), Pages 14-22, January,22 (2021)

Abstract

The current study estimates the daily global solar radiation (GSR) at subtropical region of eastern Nepal at Biratnagar Airport (lat. 26°28&

References

  1. Karanth, V. (2007). Modernization and global warming. Current Science, 93, 7-8., undefined, undefined
  2. WECS (2010). Energy Sector Synopsis Report 2010, Water and Energy Commission Secretariat, Kathmandu, Nepal, pp 1-98., undefined, undefined
  3. Fadare, D. A. (2009). Modelling of solar energy potential in Nigeria using an artificial neural network model. Applied Energy, 86(9), 1410-1422. https://doi.org/ 10.1016/ j.apenergy.2008.12.005, undefined, undefined
  4. Amrouche, B.,& le Pivert, X. (2014). Artificial neural network based daily local forecasting for global solar radiation. Applied Energy, 130, 333-341. https://doi.org/10.1016/j.apenergy.2014.05.055, undefined, undefined
  5. Besharat, F., Dehghan, A. A., & Faghih, A. R. (2013). Empirical models for estimating global solar radiation: A review and case study. Renewable and Sustainable Energy Reviews, 21, 798-821. https://doi.org/10.1016/ j.rser.2012.12.043, undefined, undefined
  6. Chen, J. L., He, L., Yang, H., Ma, M., Chen, Q., Wu, S. J., & Xiao, Z.L. (2019). Empirical models for estimating monthly global solar radiation: A most comprehensive review and comparative case study in China. Renewable and Sustainable Energy Reviews, 108, 91-111. https://doi.org/10.1016/j.rser.2019.03.033, undefined, undefined
  7. Voyant, C., Darras, C., Muselli, M., Paoli, C., Nivet, M. L., & Poggi, P. (2014). Bayesian rules and stochastic models for high accuracy prediction of solar radiation. Applied Energy, 114, 218-226. https://doi.org/10.1016/ j.apenergy.2013.09.051, undefined, undefined
  8. Pinker, R. T., Frouin, R., & Li, Z. (1995). A review of satellite methods to derive surface shortwave irradiance. Remote Sensing of Environment, 51(1),108-124., undefined, undefined
  9. Feng, Y., Gong, D., Jiang, S., Zhao, L., & Cui, N. (2020). National-scale development and calibration of empirical models for predicting daily global solar radiation in China. Energy Conversion and Management, 203, 112236. https://doi.org/10.1016/j.enconman.2019.112236, undefined, undefined
  10. Bajracharya, S.R., Shrestha, M.S., & Shrestha, A.B. (2017). Assessment of high-resolution satellite rainfall estimation products in a streamflow model for flood prediction in the Bagmati basin, Nepal. Journal of Flood Risk Management, 10(1), 5-16. https://doi.org/10.1111/jfr3.12133, undefined, undefined
  11. Martinez-lozano, J., Tena, F., Onrubia, J., & la Rubia, J. de. (1984). The historical evolution of the Angstrom formula and its modifications: Review and bibliography. Agriculture and Forest Meteorology, 33(2-3), 109-128.https://doi.org/10.1016/0168-1923(84)90064-9, undefined, undefined
  12. Poudyal, K.N. (2015). Estimation of global solar radiation using Modified Angstrom empirical formula on the basis of meteorological parameters in Himalaya Region Pokhara, Nepal. Journal of the Institute of Engineering, 11(1), 158-164., undefined, undefined
  13. Awasthi, J., & Poudyal, K.N. (2018). Estimation of global solar radiation using empirical model on meteorological parameters at Simara Airport, Bara, Nepal. Journal of the Institute of Engineering, 14(1), 143-150., undefined, undefined
  14. Makade, R.G., Chakrabarti, S., & Jamil, B. (2019). Prediction of global solar radiation using a single empirical model for diversified locations across India. Urban Climate, 29, 100492. https://doi.org/10.1016/ j.uclim.2019.100492, undefined, undefined
  15. Srivastava, R.C., & Pandey, H. (2013). Estimating Angstrom-Prescott coefficients for India and developing a correlation between sunshine hours and global solar radiation for India. ISRN Renewable Energy, 1-7. https://doi.org/10.1155/2013/403742, undefined, undefined
  16. Despotovic, M., Nedic, V., Despotovic, D., &Cvetanovic, S. (2015). Review and statistical analysis of different global solar radiation sunshine models. Renewable and Sustainable Energy Reviews,52,1869-1880. https://doi.org/10.1016/j.rser.2015.08.035, undefined, undefined
  17. Trnka, M., Zalud, Z., Eitzinger, J., &Dubrovsky, M. (2005). Global solar radiation in Central European lowlands estimated by various empirical formulae. Agricultural and Forest Meteorology, 131(1-2), 54-76. https://doi.org/ 10.1016/j.agrformet.2005.05.002, undefined, undefined
  18. Mecibah, M.S., Boukelia, T.E., Tahtah, R., &Gairaa, K. (2014). Introducing the best model for estimation the monthly mean daily global solar radiation on a horizontal surface (Case study: Algeria). Renewable and Sustainable Energy Reviews, 36,194-202. https://doi.org/ 10.1016/ j.rser.2014.04.054, undefined, undefined
  19. Podesta, G.P., Núnez, L., Villanueva, C.A., &Skansi, M.A. (2004). Estimating daily solar radiation in the Argentine Pampas. Agricultural and Forest Meteorology, 123(1-2), 41-53. https://doi.org/10.1016/j.agrformet.2003.11.002, undefined, undefined
  20. Hargreaves, G.H., &Samani, Z.A. (1982). Estimating potential evapotranspiration. Journal of Irrigation and Drainage Division, 108(3), 225-230., undefined, undefined
  21. Hassan, G.E., Youssef, M.E., Mohamed, Z.E., Ali, M.A., & Hanafy, A.A. (2016). New temperature-based models for predicting global solar radiation. Applied Energy, 179, 437-450. https://doi.org/10.1016/j.apenergy.2016.07.006, undefined, undefined
  22. Li, M.F., Tang, X.P., Wu, W., & Liu, H.B. (2013). General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy Conversion and Management,70,139-148. https://doi.org/ 10.1016/j.enconman.2013.03.004, undefined, undefined
  23. Goodin, D.G., Hutchinson, J.M.S., Vanderlip, R.L., & Knapp, M.C. (1999). Estimating solar irradiance for crop modeling using daily air temperature data. Agronomy Journal,91(5),845-851. American Society of Agronomy. https://doi.org/10.2134/agronj1999.915845x, undefined, undefined
  24. Fan, J., Chen, B., Wu, L., Zhang, F., Lu, X., & Xiang, Y. (2018). Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions. Energy, 144, 903-914. https://doi.org/ 10.1016/j.energy.2017.12.091, undefined, undefined
  25. Falayi, E., Adepitan, J., &Rabiu, A. (2008). Empirical models for the correlation of global solar radiation with meteorological data for Iseyin, Nigeria. International Journal of Physical Sciences, 3(9), 210-216., undefined, undefined
  26. Garcia, J.V. (1994). PrincipiosFisicos de la Climatologia, Ediciones. UNALM (Universidad Nacional Agraria La Molina: Lima, Peru., undefined, undefined
  27. Chen, J.L., & Li, G.S. (2013). Estimation of monthly average daily solar radiation from measured meteorological data in Yangtze River Basin in China. International Journal of Climatology, 33,487-498. https://doi.org/ 10.1002/joc.3442, undefined, undefined
  28. John A. Duffie and William A. Beckman (2013). Solar engineering of thermal processes, John Wiley & Sons, Hoboken, New Jersey, pp 3-41. ISBN: 978-1-118-43348-5, undefined, undefined
  29. Cooper, P.I. (1969). The absorption of radiation in solar stills. Solar Energy, 12(3), 333-346.https://doi.org/ 10.1016/0038-092X(69)90047-4, undefined, undefined