6th International Young Scientist Congress (IYSC-2021) and workshop on Intellectual Property Rights on 8th and 9th May 2021.  10th International Science Congress (ISC-2020) will be Postponed to 8th and 9th December 2021 Due to COVID-19.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Toxicities of senary and septenary mixtures of five metals and two phenols to Pseudomonas fluorescens

Author Affiliations

  • 1Department of Microbiology, Federal University of Technology Owerri, P.M.B 1526 Owerri, Nigeria
  • 2Department of Microbiology, Federal University of Technology Owerri, P.M.B 1526 Owerri, Nigeria
  • 3Department of Microbiology, Federal University of Technology Owerri, P.M.B 1526 Owerri, Nigeria
  • 4Department of Microbiology, Federal University of Technology Owerri, P.M.B 1526 Owerri, Nigeria

Int. Res. J. Biological Sci., Volume 9, Issue (2), Pages 19-31, May,10 (2020)


Toxicities of senary (Ni(II) + Co(II) + Zn(II) + Cd(II) + Pb(II) + 2-Chlorophenol and Ni(II) + Co(II) + Zn(II) + Cd(II) + Pb(II) + Phenol) and septenary (Ni(II) + Co(II) + Zn(II) + Cd(II) + Pb(II) + Phenol + 2-Chlorophenol) mixtures of five metals and two phenols to Pseudomonas fluorescens were assessed through dehydrogenase inhibition. Fixed ratio mixtures comprising equieffect concentration ratio (EECR) mixtures and arbitrarily chosen mixture ratios (ABCR) were used to determine the joint effects of these heavy metals in mixture with either 2-chlorophenol or phenol or both. The concentration-response relationships of all the toxicants and their mixtures were describable by logistic model. Generally, concentration addition (CA) predicted higher toxicities than independent action (IA) models. The mixture toxicities were generally synergistic. This is of environmental concern and underlines the hazard in discharging effluents containing phenols and heavy metals.


  1. Keither L, Tellard W (1979)., Priority pollutants. A perspective view., Environmental Science and Technology, 13, 416-423.
  2. Jansen E., Michels M. H. A., Van Til, M. and Doelman, P. (1994)., Effects of heavy metals in soil microbial diversity and activity as shown by the sensitivity-resistance index, an ecologically relevant parameter., Biology and Fertility of Soils, 17, 177 - 184.
  3. Wood J. M. and Wang H. K. (1983)., Microbial Resistance to Heavy Metals., Environmental Science and Technology, 17, 582 - 590.
  4. Gadd G.M. (1993)., Interactions of fungi with toxic metals., New Phytologist, 124, 25 - 60.
  5. Gikas, P. (2008)., Single and combined effects of Nickel and cobalt ions on activated sludge and on other aerobic microorganism: A review., Journal of Harzard Materials, 159, 187-203. http://dx.doi.org/10.1016/j.jhazmat.2008.02. 048
  6. Nies D.H. (1992)., Resistance to Cadmium, Cobalt, Zinc, and Nickel in Microbes., Plasmid, 27, 17 - 28.
  7. Swarts M., Verhagen F., Field J., and Wijnberg J. (1998)., Trichlorinated phenols from Hypholoma elongatum. Phytochemisry., 49, 203. http://dx.doi.org/10.1016/S0031-9422(97)01067-4
  8. Kohring G-W., Zhang X., and Wiegel J., (1989)., Anaerobic dechlorination of 2,4-dichlorophenol in fresh water sediments in the presence of sulphate., Applied and Environmental Microbiology, 55(10), 2735 - 2737.
  9. Zhang, X., and Wiegel, J., (1990)., Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments., Applied and Environmental Microbiology 56(4), 1119 - 1127.
  10. Fukumori, F., and Hausinger, R., (1993)., Alcaligenes eutrophus JMP134 2,4- dichlorophenoxyacetatemono oxygenase is an α-ketoglutarate-dependent dioxygenase., Journal of Bacteriology, 175, 2083 - 2086.
  11. Nwanyanwu C. E and Abu G. O. (2012)., Growth and degradation responses of phenol-utilizing bacteria to increased doses of phenol in petroleum refinery waste water., International Journal of Biosciences, 2, 125-134.
  12. Silva F. L. F., Matos W. O. and Lopes G.S. (2015)., Determination of cadmium, cobalt, copper, lead, nickel and zinc contents in saline produced water from the petroleum industry by ICP OES after cloud point extraction., Analytical Methods,. http://dx.doi.org/10.1039/ C5AY01026H
  13. Ma X. Y. Wang X. C. (2013)., Ecotoxicity comparison of organic contaminants and heavy metals using Vibrio qinghaiensis sp. Q67., Water Science and Technology, 67(10), 2221-2227. http://dx.doi.org/10.2166/wst.2013.113.
  14. Mccarty L.S. and Borgert C. J. (2006)., Review of toxicity of chemical mixtures: Theory, Policy and Regulatory Practice., Regulatory Toxicology and Pharmacology, 36, 198 - 210. http://dx.doi.org/10.1016/j.yrtph.2006.03.004
  15. Nweke C.O., Umeh S. I. and Ohale V. K. (2018)., Toxicity of four metals and their mixtures to Pseudomonas fluorescens: An assessment using fixed ratio ray design., Ecotoxicology and Environmental Contamination, 13(1), 1-14. http://dx.doi.org/10.5132/eec.2018.01.01
  16. Brain P. and Cousens R. (1989)., An equation to describe dose responses where there is stimulation of growth at low doses., Weed Research, 29, 93-96. https://doi.org/10.1111/ j.1365-3180.1989.tb00845.x
  17. Schabenberger O., Tharp B. E., Kells, J. J. and Penner, D., (1999)., Statistical test for hormesis and effective dosages in herbicide dose-response., Agronomy Journal, 91, 713-721. https://doi.org/10.2134/agronj1999.914713x
  18. Nweke, C. O., Orji, J. C., Ahumibe, N. C., (2015)., Prediction of phenolic compound and formulated glyphosate toxicity in binary mixtures using Rhizobium species dehydrogenase activity., Advances in Life Sciences, 5(2), 27-38. https://doi.org/10.5923/j.als.20150502.01
  19. Altenburger R., Backhaus T., Boedeker W., Faust M., Scholze M. and Grimme L.H. (2000)., Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: mixtures composed of similarly acting chemicals., Environmental Toxicology and Chemistry, 19(9), 2341-2347. https://doi.org/10.1002/etc.5620190926
  20. Boillot C. and Perrodin Y. (2008)., Joint-action ecotoxicity of binary mixtures of glutaraldehyde and surfactants used in hospitals: use of the Toxicity Index model and isobologram representation., Ecotoxicology and Environmental Safety, 71, 252-259. https://doi.org/10.1016/ j.ecoenv.2007.08.010.
  21. Pravez S., Venkataraman C. and Mukherji, S. (2009)., Nature and prevalence of non-additive toxic effects in industrially relevant mixtures of organic compound., Chemosphere, 75(11), 1429-1439. https://doi.org/10.1016/ j.chemosphere.2009.03.005
  22. Bruins M. R., Kapil S. and Oehme F. W. (2000)., Microbial resistance to metals in the environment., Ecotoxicology and Environmental Safety, 45, 198-207. https://doi.org/10.1006/eesa.1999.1860
  23. Nweke, C. O., Okolo, J. C. Nwanyanwu, C. E. and Alisi, C. S. (2006)., Response of planktonic bacteria of New Calabar River to zinc stress., African Journal of Biotechnology, 5(8), 653 - 658.
  24. Orji J. C., Nweke, C. O., Nwabueze R. N., Anyaegbu B., Chukwu J. C., Chukwueke, C. P. and Nwanyanwu, C. E. (2008)., Impacts of some divalent cations on periplasmic nitrate reductase and dehydrogenase enzymes of Escherichia, Pseudomonas and Acinetobacter species., Revista Ambiente e água, 3(2), 5 - 18.
  25. Nweke C. O. and Okpokwasili, G. C. (2012)., Kinetics of dose-response relationship of heavy metals with dehydrogenase activity in wastewater bacteria., Journal of Research in Biology, 2(4), 392 - 402.
  26. Nwanyanwu C. E., Adieze I. E., Nweke C. O. and. Nzeh B. C. (2017)., Combined effects of metals and chlorophenols on dehydrogenase activity of bacterial consortium., International Research Journal of Biological Sciences, 6(4), 10 - 20.
  27. Rathnayake I. V. N., Megharaj M., Krishnamurti G. S. R., Bolan N. S. and Naidu R. (2013)., Heavy metal toxicity to bacteria-Are the existing growth media accurate enough to determine heavy metal toxicity?, Chemosphere, 90, 1195 - 1200. https://doi.org/10.1016/j.chemosphere.2012.09.036
  28. Wasi, S., Jeelani, G., & Ahmad, M. (2008)., Biochemical characterization of a multiple heavy metal, pesticides and phenol resistant Pseudomonas fluorescens strain., Chemosphere, 71(7), 1348-1355. https://doi.org/10.1016/ j.chemosphere.2007.11.023
  29. Wasi S., Tabrez S., and Ahmad M. (2010),, Isolation and Characterization of a Pseudomonas fluorescens Strain Tolerant to Major Indian Water Pollutants., Journal of Bioremediation and Biodegradation 1, 101 https://doi.org/ 10.4172/2155-6199.1000101
  30. Jarosławiecka A. and Piotrowska-Seget Z. (2014)., Lead resistance in micro-organisms., Microbiology, 160, 12 - 25. https://doi.org/10.1099/mic.0.070284-0
  31. Keweloh H., Weyrauch G., and Rehm H. J. (1990)., Phenol induced membrane changes in free and immobilized Escherichia coli., Applied Microbiology and Biotechnology, 33, 65 - 71.
  32. Heipieper H. J., Keweloh H., Rehm H. J., (1991)., Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli., Applied and Environmental Microbiology, 57, 1213 - 1217.
  33. Nweke C. O. and Okpokwasili G. C. (2010)., Inhibition of dehydrogenase activity in petroleum refinery wastewater bacteria by phenolic compounds., Revista Ambiente e água, 5(1), 6 - 16
  34. Abbondanzi F., Cachada, A., Campisi T.; Guerra R., Raccagni M., Iacondini A. (2003)., Optimisation of a microbial bioassay for contaminated soil monitoring: bacterial inoculum standardisation and comparison with Microtox® assay., Chemosphere, 53, 889 - 897. https://doi.org/10.1016/S0045-6535(03)00717-3
  35. Nweke C. O. Mbachu I. A. C., Opurum C. C. and Mbagwu C. L. (2017)., Toxicity of quaternary mixtures of metals to aquatic microbial community., International Research Journal of Environmental Sciences, 11(3), 30-37.
  36. Zhu B-Z, Shechtman S., Chevion M. (2001)., Synergistic cytotoxicity between pentachlorophenol and copper in a bacterial model., Chemosphere 45, 463-470. https://doi.org/10.1016/S0045-6535(00)00582-8.
  37. Kim K.T., Lee Y. G., Kim S. D. (2006a)., Combined toxicity of copper and phenol derivatives to Daphnia magna: Effects of complexation reaction., Environment International, 32, 487-492. https://doi.org/10.1016/j.envint. 2005.11.002
  38. Kim K. T., Kim I. S., Hwang S. H., Kim S. D. (2006b)., Estimating the combined effects of copper and phenol to nitrifying bacteria in wastewater treatment plants., Water Research, 40, 561-568. https://doi.org/10.1016/j.watres. 2005.12.020
  39. Okolo J. C., Nweke C. O., Nwabueze R. N., Dike C. U. and Nwanyanwu C. E. (2007)., Toxicity of phenolic compounds to oxidore ductases of Acinetobacter species isolated from a tropical soil., Scientific Research and Essay, 2(7), 244 - 250.
  40. Boyd E. M., Meharg A. A., Wright J. and. Killgam K. (1997)., Assessment of toxicological interaction of benzene and its primary degradation products (catechol and phenol) using a lux -modified bacterial bioassay., Environmental Toxicology and Chemistry, 16(5), 849-856. https://doi.org/ 10.1002/etc.5620160503
  41. Sinclair G.M., Paton, G.I. Meharg, A.A. and Killham, K. (1999)., Lux- biosensor assessment of pH effects on microbial sorption and toxicity of chlorophenols., FEMS Microbiology Letters, 174, 273-278. https://doi.org/ 10.1111/j.1574-6968.1999.tb13579.x
  42. Christofi N., Hoffmann, C. and Tosh, L. (2002)., Hormesis responses of free and immobilized light-emitting bacteria., Ecotoxicology and Environmental Safety, 52, 227 - 231. https://doi.org/10.1006/eesa.2002.2203
  43. Zaki, S., Abd-El-Haleem, D., Abulhamd, A., Elbery, H. and Abuelreesh, G. (2008)., Influence of phenolics on the sensitivity of free and immobilized bioluminescent Acinetobacter bacterium., Microbiological Research, 163(3), 277-285. https://doi.org/10.1016/j.micres.2006. 07. 006.
  44. Backhaus T., Altenburger R., Boedeker W. Faust M. Scholze M. and Grimme L. H. (2000)., Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri., Environmental Toxicology and Chemistry, 19(9), 2348-2356. https://doi.org/10.1002/ etc.5620190927
  45. Faust M., Altenburger R., Backhaus T., Boedeker W., Scholze M. and Grimme L.H. (2000)., Predictive assessment of the aquatic toxicity of multiple chemical mixtures., Journal of Environmental Quality, 29, 1063 - 1068. https://doi.org/10.2134/jeq2000.004724250029000 40005x
  46. Mo L., Zhu Z., Zhu Y., Zeng H. and Li Y. (2014)., Prediction and evaluation of the mixture toxicity of twelve phenols and ten anilines to the freshwater photobacterium Vibrio qinghaiensis sp.-Q67., Journal of Chemistry. https://doi.org/10.1155/2014/728254
  47. Pöch, G., (1993)., Combined Effects of Drugs and Toxic Agents: Modern Evaluation Theory and Practice., Springer-Verlag, Wein.