6th International Virtual Congress (IVC-2019) And Workshop.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Effect of environmental factors and biological parameters of gracilaria edulis and kappaphycus alvarezii from Rameshwaram Mandapam Coast, India

Author Affiliations

  • 1Department of Botany, Queen Mary′s College, Chennai-600 004, India
  • 2Department of Botany, Queen Mary′s College, Chennai-600 004, India
  • 3Department of Botany, Queen Mary′s College, Chennai-600 004, India
  • 4Department of Botany, Queen Mary′s College, Chennai-600 004, India

Int. Res. J. Biological Sci., Volume 8, Issue (8), Pages 1-7, August,10 (2019)

Abstract

Seaweeds plays a major role in marine living organisms. They are marine macroscopic forms. The two species of red algae namely K. alvarezii and G. edulis was collected from Mandapam coast, Rameswaram. The present study was carried out to investigate the environmental parameters such as pH, nitrate and phosphate and its biochemical parameters namely carbohydrates, proteins and lipids from Gracilaria edulis and Kappaphycus alvarezii. The results revealed under environmental parameters chlorophyll showed the highest peak level compared to carbohydrates, proteins and lipids. In biochemical parameters Carbohydrate, protein and lipid content recorded the maximum peak value of 1.47 at 20th day. Protein and lipid content attains the highest peak value at 10th and 15th day with 1.88 and 1.69 respectively.

References

  1. Paniagua-Michel J., Capa-Robles W., Olmos-Soto J. and Gutierrez-Millan LE. (2009)., The carotenogenesis pathway via the isoprenoid-beta-carotene interference approach in a new strain of Dunaliella Salina isolated from Baja California Mexico., Mar. Drugs., 7, 45-56.
  2. Hernandez I., Christmas M., Yelloly J. and Whitton B.A. (1997)., Factors affecting surface alkaline phosphate activity in the brown alga Fucus spiralis at a North Sea intertidal site (Tyne Sands, Scotland)., J. Phycol., 33, 569-575.
  3. Labban CS. and Harrison PJ. (1994)., Seaweed Ecologyand Phycology., Cambridge: Cambridge University Press.
  4. HANISAK M.D. (1990)., The use of Gracilaria tikhaviae (Gracilariales, Rhodophyta) as a model system to understand the nitrogen nutrition of cultured seaweeds., Hydrobiologia, 204(1), 79-87.
  5. Kaehler S. and Kennish R. (1996)., Summer and winter comparisons in the nutritional value of marine macroalgae from Hong Kong., Botanica Marina, 39, 11-18.
  6. Chu S. (1942)., The influence of the mineral composition of the medium on the growth of planktonic algae.1. Methods and culture media., J. Ecol., 30, 284-325.
  7. DuBois M., Gilles K.A., Hamilton J.K., Rebers P.A. and Smith F. (1956)., Colorimetric method for determination of sugars and related substances., Anal. Chem., 28(3), 350-356.
  8. Lowry O.H., Rosebrough N.J., Farr A.L. and Randall R.J. (1951)., Protein measurement with the Folin phenol reagent., J. Biol. Chem., 193, 265-275.
  9. Bennett A. and Bogorad L. (1973)., Complementary chromatic adaptation in a filamentous blue-green alga., The Journal of cell biology, 58(2), 419-435.
  10. Reid, G.K. and Wood R.D. (1976)., Ecology of Inland water and estuaries,
  11. Benjamin M.M., Hayes K.F. and Leckie J.O. (1982)., Removal of toxic metals from power-generation waste streams by adsorption and coprecipitation., Journal (Water Pollution Control Federation), 1472-1481.
  12. Nyarko A.A. and Addy M.E. (1990)., Effects of aqueous extract of Adenia cissampeloides on blood pressure and serum analyze of hypersensitive patients., Phytotherapy Res., 4(1), 25-28.
  13. Eppley R.W. and Peterson B.J. (1979)., Particulate organic matter flux and planktonic new production in the deep ocean., Nature, 282, 677-680.
  14. Henriksen K. (1980)., Meseaurement of in situ rates of nitrification in sediment., Microb. Ecol, 6, 329-337.
  15. Jayaraman R. and Sheshappa G. (1957)., Phosphorus cycle in the sea with particular reference to tropical inshore waters., Proc. Ind. Acacl Sci. B., 46, 110-125.
  16. Cooper L.H.N. (1951)., Chemical properties of sea water in the neighborhood of the Labadic Bank., J Mar. Biol. Ass.U.K., 30(1), 21-26.
  17. Harvey H.W. (1955)., The chemistry and fertility of sea waters., Cambridge Univ. Press.
  18. Qasim H. (1991)., Amino acids composition of some common seaweeds., Pakistan Journal of Pharmaceutical Sciences, 41, 49-54.
  19. Fleming AE., Van Barneveld RJ. and Hone PW. (1996)., The development of artificial diets for abalone: A review and future directions., Aquaculture, 140, 5-53.
  20. Norziah M.H. and Ching C.Y. (2000)., Nutritional composition of edible seaweed Gracilaria changgi., Food chemistry, 68(1), 69-76.
  21. Jayasankar R. and Kulandaivelu G. (1999)., Seasonal variation in the biochemical constituents of Gracilaria spp. with reference to growth.,
  22. Vinoj Kumar V. and Kaladharan P. (2007)., Amino acids in the seaweeds as an alternate source of protein for animal feed., Journal of the Marine Biological Association of India, 49(1), 35-40.
  23. Manivannan K., Thirumaran G., Devi G.K., Hemalatha A. and Anantharaman P. (2008)., Biochemical composition of seaweeds from Mandapam coastal regions along Southeast Coast of India., American-Eurasian Journal of Botany, 1(2), 32-37.
  24. Nirmal Kumar J.I., Rita N.K., Manmeet K.A., Anubhuti B. and Sudeshnacha kraporty (2010)., Variation of biochemical composition of eighteen marine macroalgae collected from Okha coast, Gulf of Kutch, India., Electronic Journal of Environmental, Agricultural and Food Chemistry, 9(2), 404-410.
  25. Vincent JT., van Ginneken., Johannes PFG., Helsper Willem de Visser, Herman van, Keulen Willem and Brandenburg A. (2011)., Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas., Lipids in Health and Disease, 10, 104.
  26. Rameshkumar S., Ramakritinan C.M., Eswaran K and Yokeshbabu M. (2012)., Proximate composition of some selected seaweeds from Palk bay and Gulf of Mannar, Tamil Nadu, India., Asian J. of Biomed and Pharma. Sci., 3(16), 1-5.
  27. Thinakaran T. and Sivakumar K. (2012)., Seasonal variation and biochemical studies on certain seaweed from Pamban Coast, Gulf of Mannar biosphere review., Int. J. Res. Biol. Sci., 2, 39-44.
  28. Usha R. and Maria Victorial Rani S. (2015)., Gas chromatography and mass spectrometric analysis of Padinapavonica (L.) Lamour., Biosci. Discov., 6(1), 01-05.
  29. Dhargalkar V.K., Jagtap T.G. and Untawale A.G. (1980)., Biochemical constituents of seaweeds along the Maharashtra coast., Indian J Mar Sci., 9(4), 297-299.
  30. Sobha V., Bindu V.K., Bindu M.S. and Unnikrishnan P. (2001)., Biochemical studies of algae along the southern Kerala coast with special reference to fibre content., Seaweed Res Util, 23(1&2), 65-73.
  31. Shanmugam A. and Palpandi C. (2008)., Biochemical composition and fatty acid profile of the green alga Ulva reticulata., Asian J. Biochem., 3, 26-31.
  32. Haroon A.M., Szaniawska A., Normant M. and Janas U. (2000)., The biochemical composition of Enteromorpha spp. from the Gulf of Gdańsk coast on the southern Baltic Sea., Oceanologia, 42(1), 19-28.
  33. Morgan K.C., Wright J.L. and Simpson F.J. (1980)., Review of chemical constituents of the red alga Palmaria palmata (Dulse)., Economic Botany, 34(1), 27-50.
  34. Arasaki S. and Arasaki T. (1983)., Vegetables from the sea. Japan pub., Inc. Tokyo., 196.
  35. Fleurence J. (1999)., Seaweed proteins: Biochemical, nutritional aspects and potential uses., Trends Food SciTechnol, 10, 25-28.
  36. Fayaz M., Namitha K.K., Murthy K.C., Swamy M.M., Sarada R., Khanam S. and Ravishankar G.A. (2005)., Chemical composition, iron bioavailability, and antioxidant activity of Kappaphycus alvarezzi (Doty)., Journal of agricultural and food chemistry, 53(3), 792-797.
  37. McDermid K.J. and Stuercke B. (2003)., Nutritional composition of edible Hawaiian seaweeds., J. Appl. Phycol., 15(6), 513-524.