International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Prevalence of Salmonella spp. in raw vegetables and fruits and their plant contamination routes: a review

Author Affiliations

  • 1Department of Zoology, B.P. Baria Science Institute, Navsari, Gujarat, India
  • 2Department of Zoology, B.P. Baria Science Institute, Navsari, Gujarat, India

Int. Res. J. Biological Sci., Volume 8, Issue (3), Pages 42-48, March,10 (2019)

Abstract

Raw vegetables and fruits are essential ingredients of healthful nourishment and necessity for salad vegetables and fruits have become greater than before as vegetables and fruits act as antioxidants and immune boosters. In conflict to their health profits, it is observed by scientists that utility of raw vegetables and fruits have also been connected with the risk of disease if consume draw. Some Salmonella spp. contain virulence plasmid (pSV) which encodes spv operon are capable to adhere with plant surfaces by using T3SS and vigorously infect the core of plants by defeating immune response of plants as equally as animal cells, Salmonella spp. defeat plant defence mechanisms, shows that Salmonella possess a variety of infection strategy including agfD gene which is responsible for infecting variety of host from different kingdoms, which arise questions of Salmonella host specificity. The purpose of review study is to discuss and gain depth knowledge of routes and infection pattern of Salmonella with contrast to plant physiology, microbiological physiology, environmental interrelationship, crop processing, crop handling mechanisms along with crop cultivation methodology that provides opportunity for contamination will lead us to develop foolproof reliable policies, trustworthy standard operating procedures and infallible technologies for reducing the risk of contamination.

References

  1. Berger C.N., Sodha S.V., Shaw R.K., Griffin P.M., Pink D., Hand P. and Frankel G. (2010)., Fresh fruit and vegetables as vehicles for the transmission of human pathogens., Environmental microbiology, 12(9), 2385-2397.
  2. Sivapalasingam S., Friedman C.R., Cohen L. and Tauxe R. V. (2004)., Fresh produce: a growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997., Journal of food protection, 67(10), 2342-2353.
  3. Westrell T., Ciampa N., Boelaert F., Helwigh B., Korsgaard H., Chriél M. and Mäkelä P. (2009)., Zoonotic infections in Europe in 2007: a summary of the EFSA-ECDC annual report., Eurosurveillance, 14(3), 19100.
  4. Hedberg C.W., Angulo F.J., White K.E., Langkop C.W., Schell W.L., Stobierski M.G. and Griffin P.M. (1999)., Outbreaks of salmonellosis associated with eating uncooked tomatoes: implications for public health., Epidemiol Infect, 122(3), 385-393.
  5. Cummings K., Barrett E., Mohle-Boetani J.C., Brooks J.T., Farrar J., Hunt T. and Slutsker L. (2001)., A multistate outbreak of Salmonella enterica serotype Baildon associated with domestic raw tomatoes., Emerging infectious diseases, 7(6), 1046-1048.
  6. Gupta S.K., Nalluswami K., Snider C., Perch M., Balasegaram M., Burmeister D. and Montgomery S. (2007)., Outbreak of Salmonella Braenderup infections associated with Roma tomatoes, northeastern United States, 2004: a useful method for subtyping exposures in field investigations., Epidemiology & Infection, 135(7), 1165-1173.
  7. Gayler G.E., Maccready R.A., Reardon J.P. and Mc K.B. (1955)., An outbreak of salmonellosis traced to watermelon., Public Health Rep., 70(3), 311-313.
  8. Mohle-Boetani J.C., Reporter R., Werner S.B., Abbott S., Farrar J., Waterman S.H. and Vugia D.J. (1999)., An outbreak of Salmonella serogroup Saphra due to cantaloupes from Mexico., The Journal of infectious diseases, 180(4), 1361-1364.
  9. Bowen A., Fry A., Richards G. and Beauchat L. (2006)., Infections associated with cantaloupe consumption: a public health concern., Epidemiology & Infection, 134(4), 675-685.
  10. Munnoch S.A., Ward K., Sheridan S., Fitzsimmons G.J., Shadbolt C.T., Piispanen J.P. and Musto J.A. (2009)., A multi-state outbreak of Salmonella Saintpaul in Australia associated with cantaloupe consumption., Epidemiology & Infection, 137(3), 367-374.
  11. Pagadala S., Marine S.C., Micallef S.A., Wang F., Pahl D.M., Melendez M.V., Kline W.L., Oni R.A., Walsh C.S., Everts K.L. and Buchanan R.L. (2015)., Assessment of region, farming system, irrigation source and sampling time as food safety risk factors for tomatoes., Int J Food Microbiol., 196, 98-108.
  12. Centres for Disease Control and Prevention (2008)., An Outbreak of Salmonella serotype Saintpaul infections associated with multiple raw produce items - The United States., MMWR Morb Mortal Wkly Rep., 57, 929-934.
  13. Schikora A., Carreri A., Charpentier E. and Hirt H. (2008)., The dark side of the salad: Salmonella Typhimurium overcomes the innate immune response of Arabidopsis thaliana and shows an endopathogenic lifestyle., PLoS ONE, 3(5), e2279.
  14. Denny J., Threlfall J., Takkinen J., Lofdahl S., Westrell T., Varela C. and Straetemans M. (2007)., Multinational Salmonella paratyphi B variant Java (Salmonella Java) outbreak., Eurosurveillance, 12, 3332.
  15. Rangel J.M., Sparling P.H., Crowe C., Griffin P.M. and Swerdlow D.L. (2005)., Epidemiology of Escherichia coli O157: H7 outbreaks, united states, 1982-2002., Emerging infectious diseases, 11(4), 603.
  16. Centers for Disease Control and Prevention (2005)., Outbreaks of Salmonella infections associated with eating Roma tomatoes--United States and Canada, 2004., Morbidity and mortality weekly report, 54(13), 325.
  17. Greene S.K., Daly E.R., Talbot E.A., Demma L.J., Holzbauer S., Patel N.J. and Painter J.A. (2008)., Recurrent multistate outbreak of Salmonella Newport associated with tomatoes from contaminated fields, 2005., Epidemiology & Infection, 136(2), 157-165.
  18. Cummings K., Barrett E., Mohle-Boetani J.C., Brooks J.T., Farrar J., Hunt T. and Slutsker L. (2001)., A multistate outbreak of Salmonella enterica serotype Baildon associated with domestic raw tomatoes., Emerging infectious diseases, 7(6), 1046.
  19. Centers for Disease Control and Prevention (2007)., Multistate outbreaks of Salmonella infections associated with raw tomatoes eaten in restaurants--United States, 2005-2006., Morbidity and mortality weekly report, 56(35), 909-911.
  20. Kumar V. (2012)., Incidence of Salmonella sp. and Listeria monocytogenes in some salad vegetables, which are eaten raw: a study of Dhanbad City, India., Int J Eng Sci Res., 2(10), 1437-1442.
  21. Hamilton A.J., Stagnitti F., Premier R., Boland A.M. and Hale G. (2006)., Quantitative microbial risk assessment models for consumption of raw vegetables irrigated with reclaimed water., Appl Environ Microbiol., 72(5), 3284-3290.
  22. Tyrrel S.F., Knox J.W. and Weather head E.K. (2006)., Microbiological water quality requirements for salad irrigation in the United Kingdom., J Food Prot., 69(8), 2029-2035.
  23. Sivapalasingam S., Barrett E., Kimura A., Van Duyne S., De Witt W., Ying M. and Reddy V. (2003)., A multistate outbreak of Salmonella enterica Serotype Newport infection linked to mango consumption: impact of water-dip disinfestation technology., Clinical Infectious Diseases, 37(12), 1585-1590.
  24. Beuchat L.R. and Ryu J.H. (1997)., Produce handling and processing practices., Emerg Infect Dis., 3, 459-465.
  25. Roever C.D. (1998)., Microbiological safety evaluations and recommendations on fresh produce., Food Control., 9(6), 321-347.
  26. Natvig E.E., Ingham S.C., Ingham B.H., Cooperband L.R., and Roper T.R. (2002)., Salmonella enterica serovar Typhimurium and Escherichia coli contamination of root and leaf vegetables grown in soils with incorporated bovine manure., Appl Environ Microbiol., 68, 2737-2744.
  27. Santamaria J. and Toranzos G.A. (2003)., Enteric pathogens and soil: a short review., Int Microbiol, 6, 5-9.
  28. Rice D.H., Hancock D.D. and Besser T.E. (1995)., Verotoxigenic E. coli O157 colonization of wild deer and range cattle., Vet Rec, 137(20), 524.
  29. Ackers M.L., Mahon B.E., Leahy E., Goode B., Damrow T., Hayes P.S. and Griffin P.M. (1998)., An outbreak of Escherichia coli O157:H7 infections associated with leaf lettuce consumption., J Infect Dis., 177, 1588-1593.
  30. Jay M.T., Cooley M., Carychao D., Wiscomb G.W., Sweitzer R.A., Crawford-Miksza L. and Asmundson R.V. (2007)., Escherichia coli O157:H7 in feral swine near spinach fields and cattle, central California coast., Emerg Infect Dis., 13(12), 1908-1911.
  31. Iwasa M., Makino S., Asakura H., Kobori H. and Morimoto Y. (1999)., Detection of Escherichia coli O157:H7 from Musca domestica (Diptera: Muscidae) at a cattle farm in Japan., J Med Entomol., 36, 108-112.
  32. Sela S., Nestel D., Pinto R., Nemny-Lavy E. and Bar-Joseph M. (2005)., Mediterranean fruit fly as a potential vector of bacterial pathogens., Appl Environ Microbiol, 71(7), 4052-4056.
  33. Talley J.L., Wayadande A.C., Wasala L.P., Gerry A.C., letcher J., DeSilva U. and Gilliland S.E. (2009)., Association of Escherichia coli O157:H7 with filth flies (Muscidae and Calliphoridae) captured in leafy greens fields and experimental transmission of E. coli O157:H7 to spinach leaves by house flies (Diptera: Muscidae)., J Food Prot., 72, 1547-1552.
  34. Vojdani J.D., Beuchat L.R. and Tauxe R.V. (2008)., Juiceassociated outbreaks of human illness in the United States, 1995 through 2005., J Food Prot., 71(2), 356-364.
  35. Beuchat L.R. and Scouten A.J. (2002)., Combined effects of water activity, temperature and chemical treatments on the survival of Salmonella and Escherichia coli O157: H7 on alfalfa seeds., Journal of Applied Microbiology, 92(3), 382-395.
  36. Mahon B.E., Ponka A., Hall W.N., Komatsu K., Dietrich S.E., Siitonen A. and Griffin P.M. (1997)., An international outbreak of Salmonella infections caused by alfalfa sprouts grown from contaminated seeds., J Infect Dis., 175(4), 876-882.
  37. Winthrop K.L., Palumbo M.S., Farrar J.A., Mohle-Boetani J.C., Abbott S., Beatty M.E. and Werner S.B. (2003)., Alfalfa sprouts, and Salmonella Kottbus infection: a multistate outbreak following inadequate seed disinfection with heat and chlorine., J Food Prot, 66, 13-17.
  38. O'Mahony M., Cowden J., Smyth B., Lynch D., Hall M., Rowe B. and Gilbert R.J. (1990)., An outbreak of Salmonella saint-paul infection associated with beansprouts., Epidemiol Infect., 104, 229-235.
  39. Campbell J.V., Mohle-Boetani J., Reporter R., Abbott S., Farrar J., Brandl M. and Werner S.B. (2001)., An outbreak of Salmonella serotype Thompson associated with fresh cilantro., J Infect Dis, 183(6), 984-987.
  40. Horby P.W., O'Brien S.J., Adak G.K., Graham C., Hawker J.I., Hunter P. and Threlfall E.J. (2003)., A national outbreak of multiresistant Salmonella enterica serovar Typhimurium definitive phage type (DT) 104 associated with consumption of lettuce., Epidemiology Infect, 130(2), 169-178.
  41. Guo X., Chen J., Brackett R.E. and Beuchat L.R. (2001)., Survival of Salmonellae on and in tomato plants from the time of inoculation at flowering and early stages of fruit development through fruit ripening., Appl. Environ. Microbiol., 67(10), 4760-4764.
  42. Barak J.D., Gorski L., Naraghi-Arani P. and Charkowski A. O. (2005)., Salmonella enterica virulence genes are required for bacterial attachment to plant tissue., Appl. Environ. Microbiol., 71(10), 5685-5691.
  43. Gibson D.L., White A.P., Snyder S.D., Martin S., Heiss C., Azadi P. and Kay W.W. (2006)., Salmonella produces an O-antigen capsule regulated by AgfD and important for environmental persistence., J Bacteriol., 188(22), 7722-7730.
  44. Barak J.D., Jahn C.E., Gibson D.L. and Charkowski A.O. (2007)., The role of cellulose and O-antigen capsule in the colonization of plants by Salmonella enterica., Mol Plant Microbe Interact., 20(9), 1083-1091.
  45. Brandl M.T. (2006)., Fitness of human enteric pathogens on plants and implications for food safety., Annu. Rev. Phytopathol., 44, 367-392.
  46. Jonas K., Tomenius H., Kader A., Normark S., Romling U., Belova L.M. and Melefors O. (2007)., Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy., BMC Microbiol., 7(70), 1-9.
  47. Prigent-Combaret C., Brombacher E., Vidal O., Ambert A., Lejeune P., Landini P. and Dorel C. (2001)., Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of thecsgD gene., Journal of bacteriology, 183(24), 7213-7223.
  48. Romling U., Bian Z., Hammar M., Sierralta W.D. and Normark S. (1998)., Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation., J. Bacteriol, 180(3), 722-731.
  49. Raina S., Missiakas D., Baird L., Kumar S.U.S.H.I.L. and Georgopoulos C. (1993)., Identification and transcriptional analysis of the Escherichia coli htrE operon which is homologous to pap and related pilin operons., Journal of bacteriology, 175(16), 5009-5021.
  50. Serovar I.S.E., Ibanez-ruiz M., Robbe-saule V., Labrude S., Norel F. and Hermant D. (2000)., Identification of RpoS (S)-Regulated Genes in Salmonella enterica serovar Typhimurium., J. Bacteriol., 182(20), 5749-5756.
  51. Baker B., Zambryski P., Staskawicz B. and Dinesh-Kumar S.P. (1997)., Signaling in plant-microbe interactions., Science, 276(5313), 726-733.
  52. Staskawicz B.J., Mudgett M.B., Dangl J.L. and Galan J.E. (2001)., Common and contrasting themes of plant and animal diseases., Science, 292(5525), 2285-2289.
  53. Chu C., Feng Y., Chien A.C., Hu S., Chu C.H. and Chiu C.H. (2008)., Evolution of genes on the Salmonella virulence plasmid phylogeny revealed from the sequencing of the virulence plasmids of S. enterica serotype Dublin and comparative analysis., Genomics, 92(5), 339-343.
  54. Guiney D.G. and Fierer J. (2011)., The role of the spv genes in Salmonella pathogenesis., Front Microbiol., 2(129), 1-10.
  55. Gulig P.A. and Curtiss R. III. (1987)., Plasmid-associated virulence of Salmonella typhimurium., Infect Immun., 55(12), 2891-2901.
  56. Gulig P.A. and Doyle T.J. (1993)., The Salmonella typhimurium virulence plasmid increases the growth rate of Salmonellae in mice., Infect Immun., 61(2), 504-511.
  57. Rychlik I., Gregorova D. and Hradecka H. (2006)., Distribution and function of plasmids in Salmonella enterica., Vet Microbiol., 112, 1-10.
  58. Chu C., Hong S.F., Tsai C., Lin W.S., Liu T.P. and Ou J.T. (1999)., Comparative physical and genetic maps of the virulence plasmids of Salmonella enterica serovars Typhimurium, Enteritidis, Choleraesuis and Dublin., Infect Immun., 67(5), 2611-2614.
  59. Jones G.W., Rabert D.K., Svinarich D.M. and Whitfield H.J. (1982)., Association of adhesive, invasive, and virulent phenotypes of Salmonella typhimurium with autonomous 60-megadalton plasmids., Infect Immun., 38(2), 476-486.
  60. Gulig P.A., Danbara H., Guiney D.G., Lax A.J., Norel F. and Rhen M. (1993)., Molecular analysis of spv virulence genes of the Salmonella virulence plasmids., Mol Microbiol., 7(6), 825-830.
  61. Olsen J.E., Brown D.J., Thomsen L.E., Platt D.J. and Chadfield M.S. (2004)., Differences in the carriage and the ability to utilize the serotype associated virulence plasmid in strains of Salmonella enterica serotype Typhimurium investigated by use of a self-transferable virulence plasmid, pOG669., Microb Pathog., 36(6), 337-347.
  62. Ou J.T. and Baron L.S. (1991)., Strain differences in expression of virulence by the 90 kilobases pair virulence plasmid of Salmonella serovar Typhimurium., Microb Pathog., 10(3), 247-251.
  63. Holden N., Pritchard L. and Toth I. (2009)., Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria., FEMS Microbiol Rev., 33(4), 689-703.
  64. Heaton J.C. and Jones K. (2008)., Microbial contamination of fruit and vegetables and the behavior of enteropathogens in the phyllosphere: a review., J Appl Microbiol., 104(3), 613-626.
  65. Schikora A., Garcia A.V. and Hirt H. (2012)., Plants as alternative hosts for Salmonella., Trends Plant Sci., 17(5), 245-249.
  66. Schikora A., Virlogeux-Payant I., Bueso E., Garcia A.V., Nilau T., Charrier A., Pelletier S., Menanteau P., Baccarini M., Velge P. and Hirt H. (2011)., Conservation of Salmonella infection mechanisms in plants and animals., PLoS One, 6(9), e24112.
  67. Shi X., Namvar A., Kostrzynska M., Hora R. and Warriner K. (2007)., Persistence and growth of different Salmonella serovars on pre- and postharvest tomatoes., J Food Prot.,70(12), 2725-2731.
  68. Patel J. and Sharma M. (2010)., Differences in attachment of Salmonella enterica serovars to cabbage and lettuce leaves., Int. J. Food Microbiol., 139(1-2), 41-47.
  69. Iniguez A.L., Dong Y., Carter H.D., Ahmer B.M., Stone J. M. and Triplett E.W. (2005)., Regulation of enteric endophytic bacterial colonization by plant defenses., Molecular Plant-Microbe Interactions, 18(2), 169-178.
  70. Barak J.D., Kramer L.C. and Hao L.Y. (2011)., Colonization of tomato plants by Salmonella enterica is cultivar dependent, and type 1 trichomes are preferred colonization sites., Appl. Environ. Microbiol., 77(2), 498-504.
  71. Golberg D., Kroupitski Y., Belausov E., Pinto R. and Sela S. (2011)., Salmonella Typhimurium internalization is variable in leafy vegetables and fresh herbs., International journal of food microbiology, 145(1), 250-257.
  72. Kroupitski Y., Golberg D., Belausov E., Pinto R., Swartzberg D., Granot D. and Sela S. (2009)., Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata., Appl. Environ. Microbiol., 75(19), 6076-6086.
  73. Klerks M.M., Franz E., van Gent-Pelzer M., Zijlstra C. and Van Bruggen A.H. (2007)., Differential interaction of Salmonella enterica serovars with lettuce cultivars and plant-microbe factors influencing the colonization efficiency., ISME J., 1, 620-631.
  74. Behlau I. and Miller S.I. (1993)., A PhoP-repressed gene promotes Salmonella Typhimurium invasion of epithelial cells., J. Bacteriol., 175(14), 4475-4484.
  75. Hensel M., Shea J.E., Raupach B., Monack D., Falkow S., Gleeson C. and Holden D.W. (1997)., Functional analysis of ssaJ and the ssaK/U operon, 13 genes encoding components of the type III secretion apparatus of Salmonella pathogenicity island 2., Molecular microbiology, 24(1), 155-167.
  76. Collazo C.M. and Galan J.E. (1997)., The invasion-associated type-III protein secretion system in Salmonella-a review., Gene, 192, 51-59.
  77. Hensel M. (2000)., Salmonella pathogenicity island 2., Molecular microbiology, 36(5), 1015-1023.
  78. Heffron F., Niemann G., Yoon H., Kidwai A., Brown R., McDermott J.D. and Adkins J.N. (2011)., Salmonella-secreted virulence factors., Salmonella: from genome to function, 187-223.
  79. Mazurkiewicz P., Thomas J., Thompson J.A., Liu M., Arbibe L., Sansonetti P. and Holden D.W. (2008)., SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen‐activated protein kinases., Molecular microbiology, 67(6), 1371-1383.
  80. Arbibe L., Kim D.W., Batsche E., Pedron T., Mateescu B., Muchardt C. and Sansonetti P.J. (2007)., An injected bacterial effector targets chromatin access for transcription factor NF-κB to alter transcription of host genes involved in immune responses., Nature immunology, 8(1), 47-56.
  81. Li H., Xu H., Zhou Y., Zhang J., Long C., Li S. and Shao F. (2007)., The phosphothreonine lyase activity of a bacterial type III effector family., Science, 315(5814), 1000-1003.
  82. Lin S.L., Le T.X. and Cowen D.S. (2003)., SptP, a Salmonella typhimurium type III‐secreted protein, inhibits the mitogen‐activated protein kinase pathway by inhibiting Raf activation., Cellular microbiology, 5(4), 267-275.