International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

The importance of genetic variation in wildlife populations and its relationship with the structure and conservation of habitats, a critical review

Author Affiliations

  • 1School of Tourism, Hospitality and Events Management, Department of Tourism Management, Moi University, Kenya

Int. Res. J. Biological Sci., Volume 8, Issue (12), Pages 37-41, December,10 (2019)

Abstract

Other than natural causes, human actions and inactions through habitat destruction and ineffective implementation of species management and conservation plans are major causes of species extinctions. This study sought to systematically review the importance of habitats in enhancing genetic variation in preventing extinction and relate this to conservation practices. Findings confirm that intact and unfragmented habitats and genetic variation are important aspect in species conservation. Species management plans should, therefore, focus on maintaining this through preventing habitat destruction, a future ecological cost of current human practices and malpractices.

References

  1. Giglio R.M., Ivy J.A., Jones L.C. and Latch E.K. (2016)., Evaluation of alternative management strategies for maintenance of genetic variation in wildlife populations., Animal Conservation, 19(4), 380-390. https://doi:10.1111/acv.12254
  2. Kosman E. and Leonard K.J. (2005)., Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species., Molecular ecology, 14(2), 415-424.
  3. Nei M. (1987)., Molecular evolutionary genetics., Columbia University Press, New York.
  4. Campbell S., Guay P.J., Mitrovski P.J. and Mulder R. (2009)., Genetic differentiation among populations of a specialist fishing bat suggests lack of suitable habitat connectivity., Biological Conservation, 142(11), 2657-2664. https://doi:10.1016/j.biocon.2009.06.014
  5. Lacy R.C. (1997)., Importance of genetic variation to the viability of mammalian populations., Journal of Mammalogy, 78(2), 320-335. https://doi:10.2307/1382885
  6. O′Grady J.J., Reed D.H., Brook B.W. and Frankham R. (2004)., What are the best correlates of predicted extinction risk?., Biological Conservation, 118(4), 513-520.
  7. Berggren A. (2005)., Effect of propagule size and landscape structure on morphological differentiation and asymmetry in experimentally introduced Roesel, Conservation Biology, 19(4), 1095-1102. https://doi:10.1111/j.1523-1739.2005.00171.x
  8. Hoffmann A.A. and Daborn P.J. (2007)., Towards genetic markers in animal populations as biomonitors for human-induced environmental change., Ecology Letters, 10, 63-76.
  9. Pullin A.S. and Stewart G.B. (2006)., Guidelines for systematic review in conservation and environmental management., Conserv Biol, 20, 1647-1656. https://doi.org/10.1111/j.1523-1739.2006.00485.x
  10. Nelson H.P., Devenish-Nelson E.S., Rusk B.L., Geary M. and Lawrence A.J. (2018)., A call to action for climate change research on Caribbean dry forests., Regional environmental change, 18(5), 1337-1342.
  11. Dor L., Shirak A., Rosenfeld H., Ashkenazi I.M., Band M.R., Korol A. and Ron M. (2016)., Identification of the sex-determining region in flathead grey mullet (Mugil cephalus)., Animal Genetics, 47(6), 698-707. https://doi:10.1111/age.12486
  12. Johnson R.M., Shrimpton J.M., Cho G. K. and Heath D.D. (2007)., Dosage effects on heritability and maternal effects in diploid and triploid Chinook salmon (Oncorhynchus tshawytscha)., Heredity, 98(5), 303-310. https://doi:10.1038/sj.hdy.6800941
  13. Jan P.L., Gracianne C., Fournet S., Olivier E., Arnaud J.F., Porte C. and.Petit E.J. (2016)., Temporal sampling helps unravel the genetic structure of naturally occurring populations of a phytoparasitic nematode. 1. Insights from the estimation of effective population sizes., Evolutionary Applications, 9(3), 489-501. https://doi:10.1111/eva.12352
  14. O′Brien S.J. and Evermann J.F. (1988)., Interactive influence of infectious disease and genetic diversity in natural populations., Trends Ecol. Evol., 3(10), 254-259.
  15. Reid N.M., Jackson C.E., Gilbert D., Minx P., Montague M.J., Hampton T.H. and Whitehead A. (2017)., The Landscape of Extreme Genomic Variation in the Highly Adaptable Atlantic Killifish., Genome Biology and Evolution, 9(3), 659-676. https://doi:10.1093/gbe/evx023
  16. Ripperger S.P., Tschapka M., Kalko E.K.V., Rodriguez-Herrera B. and Mayer F. (2014)., Resisting habitat fragmentation: High genetic connectivity among populations of the frugivorous bat Carollia castanea in an agricultural landscape., Agriculture Ecosystems & Environment, 185, 9-15. https://doi:10.1016/j.agee.2013.12.006
  17. Bekkevold D., Hansen M.M. and Nielsen E.E. (2006)., Genetic impact of gadoid culture on wild fish populations: predictions, lessons from salmonids, and possibilities for minimizing adverse effects., Ices Journal of Marine Science, 63(2), 198-208. https://doi:10.1016/j.icesjms.2005.11.003
  18. Shepherd T.M. and Burns K.J. (2007)., Intraspecific genetic analysis of the summer tanager Piranga rubra: implications for species limits and conservation., Journal of Avian Biology, 38(1), 13-27. https://doi:10.1111/j.2007.0908-8857.03727.x
  19. Reiter G., Polzer E., Mixanig H., Bontadina F. and Huttmeir U. (2013)., Impact of landscape fragmentation on a specialised woodland bat, Rhinolophus hipposideros., Mammalian Biology, 78(4), 283-289. https://doi:10.1016/j.mambio.2012.11.003
  20. Galloway L.F., Etterson J.R. and McGlothlin J.W. (2009)., Contribution of direct and maternal genetic effects to life-history evolution., New Phytologist, 183(3), 826-838. https://doi:10.1111/j.1469-8137.2009.02939.x
  21. Field S.A. and Yuval B. (1999)., Nutritional status effects copula duration in the Mediterranean fly, Ceratitis capitata (Insecta Tephritidae)., Ethology Ecology & Evolution, 11, 61-70.
  22. Henle K., Davies K.F., Kleyer M., Margules C., Settele J. (2004)., Predictors of speciessensitivity to fragmentation., Biodivers. Conserv., 13, 207-251.
  23. Keller I. and Largiadèr C.R. (2003)., Recent habitat fragmentation caused by major roadsleads to reduction of gene flow and loss of genetic variability in ground beetles., Proc. R. Soc. B, 270, 417-423.
  24. Vandergast A.G., Bohonak A.J., Weissman D.B. and Fisher R.N. (2007)., Understandingthe genetic effects of recent habitat fragmentation in the context of evolution-ary history: phylogeography and landscape genetics of a southern Californiaendemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus)., Mol.Ecol., 16, 977-992.
  25. Holderegger R. and Di Giulio M. (2010)., The genetic effects of roads: a review of empirical evidence., Basic and Applied Ecology, 11(6), 522-531.
  26. Avise J.C. (1994)., Molecular Markers, Natural History and Evolution., Chapman & Hall, London.
  27. Wright S. (1931)., Evolution in Mendelian populations., Genetics, 16, 97-159.
  28. Willi Y., Van Buskirk J. and Hoffmann A.A. (2006)., Limits to the adaptive potential of small populations., Annu. Rev. Ecol. Evol. Syst. 37, 433-458.
  29. Markert J.A., Champlin D.M., Gutjahr-Gobell R., Grear J.S., Kuhn A., McGreevy T., Roth A., Bagley M.J. and Nacci D.E. (2010)., Population genetic diversity and fitness in multiple environments., BMC Evol. Biol., 10, 205.
  30. Rossiter S.J., Jones G., Ransome R.D. and Barratt E.M. (2000)., Genetic variation and population structure in the endangered greater horseshoe bat Rhinolophus ferrumequinum., Molecular Ecology, 9, 1131-1135.
  31. Tilman D., May R.M., Lehman C.L. and Nowak M.A. (1994)., Habitat destruction and the extinction debt., Nature, 371(6492), 65-66. https://doi:10.1038/371065a0
  32. Lowe A., Harris S. and Ashton P. (2004)., Ecological Genetics: Design, Analysis and Application., Blackwell Publishing, Carlton, Australia.