5th International Young Scientist Congress (IYSC-2019).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Transcriptomic analysis of Agelenopsis naevia (Aranae: Agelenidae) Venom Gland

Author Affiliations

  • 1Department of Zoology, Ahmadu Bello University Zaria, Nigeria
  • 2Department of Zoology, Ahmadu Bello University Zaria, Nigeria
  • 3Department of Zoology, Ahmadu Bello University Zaria, Nigeria

Int. Res. J. Biological Sci., Volume 7, Issue (3), Pages 9-23, March,10 (2018)


The venom of spider is made up of toxins with varying biological activities whose selectivity and affinity for various receptors and ion channels are yet to be sufficiently explored and exploited. Recently, transcriptomics have been employed as a tool to reveal the molecular diversity and structure of animal venoms across species. Thus, this study was carried out to determine the transcripts coding for toxins in the venom gland of Agelenopsis naevia, collected in open gardens of Ahmadu Bello University Zaria, Nigeria. Venom glands were isolated using micro dissection followed by mRNA extraction. A cDNA library was constructed and pair-end sequencing was carried out. A total of 11,167,123 reads were generated which were assembled into 33,182 sequences. Fourty eight (48) transcript coded for proteins/peptides amongst which are sphingomyelinase-D, hyaluronidase, astacin-like metalloproteases, techylectin and cystine knot toxins. The results provide insight towards the discovery of novel potential bioinsecticides and/or drug leads from Agelenopsis Naevia venom for agro-allied/pharmaceutical applications.


  1. Agnarsson I., Coddington J.A. and Kuntner M. (2013)., Systematics - progress in the study of spider diversity and evolution., D. Penney (Ed.), Spider research in the 21st century: trends and Perspectives, Siri Scientific Press, Manchester, UK, 58-11. 978-0-9574530-1-2
  2. Rash L.D. and Hodgson W.C. (2002)., Pharmacology and biochemistry of spider venoms., Toxicon, 40(3), 225-254.
  3. Escoubas P., Sollod B. and King G.F. (2006)., Venom landscapes: Mining the complexity of spider venoms via a combined cDNA and mass spectrometric approach., Toxicon, 47(6), 650-663.
  4. Liang S. (2004)., An overview of peptide toxins from the venom of the Chinese bird spider Selenocosmia huwena Wang [= Ornithoctonus huwena (Wang)]., Toxicon, 43(5), 575-585.
  5. Siemens J., Zhou S., Piskorowski R., Nikai T., Lumpkin E.A., Basbaum A.I., King D. and Julius D. (2006)., Spider toxins activate the capsaicin receptor to produce inflammatory pain., Nature, 444, 208-212.
  6. Bohlen C.J., Priel A., Zhou S., King D., Siemens J. and Julius D. (2010)., A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain., Cell, 141(5), 834-845.
  7. Windley M.J., Herzig V., Dziemborowicz S.A., Hardy M.C., King G.F. and Nicholson G.M. (2012)., Spider-Venom Peptides as Bioinsecticides., Toxins, 4(3), 191-227.
  8. King G.F. and Hardy M.C. (2013)., Spider venom peptides: Structure, pharmacology, and potential for control of insect pests., Annu. Rev. Entomol., 58, 475-496.
  9. Escoubas P. and Rash L. (2004)., Tarantulas: Eight-legged pharmacists and combinatorial chemists., Toxicon, 43(5), 555-574.
  10. Tedford H.W, Sollod B.L., Maggio F. and King G.F. (2004)., Australian funnel-web spiders: Master insecticide chemists., Toxicon, 43(5), 601-618.
  11. Sollod B.L., Wilson D., Zhaxybayeva O., Gogarten J.P., Drinkwater R. and King G.F. (2005)., Were arachnids the first to use combinatorial peptide libraries?., Peptides, 26(1), 131-139.
  12. Platnick N.I. (2012)., The world spider catalog., version 12.0. American Museum of Natural History, 2012. Available online: http://research.amnh.org/iz/spiders/ catalog (accessed on 20 December 2014).
  13. Skinner W.S., Adams M.E., Quistad G.B., Kataoka H., Cesarin B.J., Enderlin F.E. and Schooley D.A. (1989)., Purification and characterization of two classes of neurotoxins from the funnel web spider, Agelenopsis aperta., J. Biol Chem., 264(4), 2150-2155.
  14. Adams M.E., Bindokas V.P., Hasegawa L. and Venema V.J. (2004)., Omega-agatoxins: novel calcium channel antagonists of two subtypes from funnel web spider (Agelenopsisaperta) venom., J. Biol. Chem., 265, 861-867.
  15. Adams M.E. (2004)., Agatoxins: ion channel specific toxins from the American funnel web spider, Agelenopsisaperta., Toxicon, 43(5), 509-525.
  16. Guarisco H. (2014)., The funnelweb spider genus Agelenopsis (Araneae: Agelenidae) in Kansas., Transactions of the Kansas Academy of Science, 117(1-2), 79-87.
  17. Bennett R.G. and Ubick D. (2005)., Agelenidae., In Spiders of North America: an identification manual, 2nd ed.; Ubick, D., Paquin, P., Cushing, P.E, Roth, V., Eds.; American Arachnological Society, 56-59. ISBN-13:9780998014609
  18. King G.F., Gentz M.C., Escoubas P. and Nicholson G.M. (2008)., A rational nomenclature for naming peptide toxins from spiders and other venomous animals., Toxicon, 52(2), 264-276.
  19. Chen J., Deng M., He Q., Meng E., Jiang L., Liao Z., Rong M. and Liang S. (2008)., Molecular diversity and evolution of cystine knot toxins of the tarantula Chilobrachys jingzhao., Cell. Mol. Life Sci., 65(15), 2431-2444.
  20. Diego-García E., Peigneur S., Waelkens E., Debaveye S. and Tytgat J. (2010)., Venom components from Citharischiuscrawshayi spider (Family Theraphosidae): Exploring transcriptome, venomics, and function., Cell Mol. Life Sci., 67(16), 2799-2813.
  21. Jiang L., Zhang D., Zhang Y., Peng L., Chen J. and Liang S. (2010)., Venomics of the spider Ornithoctonushuwena based on transcriptomic versus proteomic analysis., Comp. Biochm. Physiol. Part D Genomics and Proteomics, 5(2), 81-88.
  22. Tang X., Zhang Y., Hu W., Xu D., Tao H., Yang X., Li Y., Jiang L. and Liang S. (2010)., Molecular diversification of peptide toxins from the tarantula Haplopelmahainanum (Ornithoctonushainana) venom based transcriptomic, peptidomic, and genomic analyses., J. Proteome Res., 9(5), 2550-2564.
  23. Zhang Y., Chen J., Tang X., Wang F., Jiang L., Xiong X., Wang M., Rong M., Liu Z. and Liang S. (2010)., Transcriptome analysis of the venom glands of the Chinese wolf spider Lycosasingoriensis., Zoology, 113, 10-18.
  24. Herzig V., Wood D.L., Newell F., Chaumeil P.A., Kaas Q., Binford G.J., Nicholson G.M., Gorse D. and King G.F. (2011)., Arachno Server 2.0, an updated online resource for spider toxin sequences and structures., Nucleic Acids Res., 39, 653-657. http://www.arachnoserver.org(accessed on 19/04/2016)
  25. Google Earth. Available online: http://www.google.com/earth/index.html (accessed on 9/03/2015)., undefined, undefined
  26. Dippenaar-Schoeman A.S. and Jocque R. (1997)., African spiders, an identification manual., Biosystematics Division, ARC-Plant Protection Research Institute, Pretoria. Handbook 9. Ultra Litho: Heriotdale Johannesburg, South Africa, 392pp; ISBN 0 621 17544 7
  27. Whitman-Zai J., Francis M., Geick M. and Cushing P.E. (2015)., Revision and morphological phylogenetic analysis of the funnel web spider genus Agelenopsis (Araneae: Agelenidae)., The Journal of Arachnology, 43, 1-25.
  28. Spider (2015)., World Spider Catalog., Natural History Museum Bern, online at http://wsc.nmbe.ch, version 18.5, (accessed on 10/12/2015).
  29. Garb J.E. (2014)., Extraction of venom and venom gland microdissection from spiders for proteomic and transcriptomic analyses., J. Vis. Exp., 93, 51618.
  30. Luna-Ramírez K., Quintero-Hernández V., Juárez-González V.R. and Possani L.D. (2015)., Whole transcriptome of the venom gland from Urodacu syaschenkoi scorpion., PLoS ONE, 10(5), 1-33.
  31. Andrews S. (2010)., FastQC: A quality control tool for high throughput sequence data., Available online: http://www.bioinformatics.babraham.ac.uk?/projects/fastqc/ (accessed on 9/02/2016).
  32. Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., Chen Z., Mauceli E., Hacohen N., Gnirke A., Rhind N., di Palma F., Birren B.W., Nusbaum C., Lindblad-Toh K., Friedman N. and Regev A. (2011)., Full-length transcriptomeassembly from RNA-Seq data without a reference genome., Nat. Biotechnol., 29(7), 644-652.
  33. Trapnell C., Roberts A., Goff L., Pertea G., Kim D., Kelley D.R., Pimentel H., Salzberg S.L., Rinn J.L. and Pachter L. (2012)., Differential gene and transcript expression analysis of RNA-seq experiments with Top Hat and Cufflinks., Nat. Protoc., 7, 562-578. http://tophat.cbcb.umd.edu/(accessed on 18/02/2016)
  34. Conesa A., Götz S., Garcia-Gomez J.M., Terol J., Talon M. and Robles M. (2005)., Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research., Bioinformatics, 21(18), 3674-3676.https://www.blast2go.com (accessed on 16/05/2017).
  35. Artimo P., Jonnalagedda M., Arnold K., Baratin D., Csardi G., de Castro E., Duvaud S., Flegel V., Fortier A., Gasteiger E., Grosdidier A., Hernandez C., Ioannidis V., Kuznetsov D., Liechti R., Moretti S., Mostaguir K., Redaschi N., Rossier G., Xenarios I. and Stockinger H. (2012)., ExPASy: SIB bioinformatics resource portal., Nucleic Acids Res, 40(W1), W597-W603. http://web.expasy.org/translate(accessed on 18/02/2016).
  36. Kumar S., Tamura K. and Nei M. (2004)., MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment., Brief. Bioinform., 5(2), 150-163.
  37. Kubista H., Mafra R.A., Chong Y., Nicholson G.M., Beirão P.S., Cruz J.S., Boehm S., Nentwig W. and Kuhn-Nentwig L. (2007)., CSTX-1, a toxin from the venom of the hunting spider Cupienniussalei, is a selective blocker of L-type calcium channels in mammalian neurons., Neuropharmacology, 52(8), 1650-1662.
  38. He Q., Duan Z., Yu Y., Liu Z., Liu Z. and Liang S. (2013)., The venom gland transcriptome of Latrodectustredecimguttatusrevealed by deep sequencingand cDNA library analysis., PLoS ONE, 8(11), e81357.
  39. Colgrave M.L. and Craik D.J. (2004)., Thermal, chemical, and enzymatic stability of the cyclotidekalata B1: the importance of the cyclic cystine knot., Biochemistry, 43(20), 5965-5975.
  40. Fry B.G., Roelants K., Champagne D.E., Scheib H., Tyndall J.D.A., King G.F., Nevalainen T.J., Norman J.A., Lewis R.J., Norton R.S., Renjifo C. and de la Vega R.C. (2009)., The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms., Annu. Rev. Genome Hum. Genet., 10, 483-511.
  41. Jiang L., Liu C., Duan Z., Deng M., Tang X. and Liang S. (2013)., Transcriptome analysis of venom glands from a single fishing spider Dolomedes mizhoanus., Toxicon, 73, 23-32.
  42. da Silveira R.B., Chaim O.M., Mangili O.C., Gremski W., Dietrich C.P., Nader H.B. and Veiga S.S. (2007)., Hyaluronidases in Loxoscelesintermedia (Brown spider) venom are endo-beta-N-acetyl-d-hexosaminidases hydrolases., Toxicon, 49(6), 758-768.
  43. Cerdà-Costa N. and Gomis-Rüth F.X. (2014)., Architecture and function of metallopeptidase catalytic domains., Protein Science, 23(2), 123-144.
  44. Trevisan-Silva D., Gremski L.H., Chaim O.M., da Silveira R.B., Meissner G.O., Mangili O.C., Barbaro K.C., Gremski W., Veiga S.S. and Senff-Ribeiro A. (2010)., Astacin-like metalloproteases are a gene family of toxins present in the venom of different species of the brown spider (genus Loxosceles)., Biochimie, 92(1), 21-32.
  45. Undheim E.A., Sunagar K., Herzig V., Kely L., Low D.H., Jackson T.N., Jones A., Kurniawan N., King G.F., Ali S.A., Antunes A., Ruder T. and Fry B.G. (2013)., A proteomics and transcriptomics investigation of the venom from the barychelid spider Trittameloki(brush-foot trapdoor)., Toxins, 5(12), 2488-2503.
  46. Kairies N., Beisel H.G., Fuentes-Prior P., Tsuda R., Muta T., Iwanaga S., Bode W., Huber R. and Kawabata S. (2001)., The 2.0-A crystal structure of tachylectin 5A provides evidence for the common origin of the innate immunity and the blood coagulation systems., PNAS, 98(24), 13519-13524.
  47. Wan H., Kang T., Kim B.Y., Lee S.K. and Li J. (2014)., AvCystatin, a novel cysteine protease inhibitor from spider (Araneusventricosus)., Journal of Asian Pacific Entomology, 18(1), 13-18.
  48. deFernandes-padrosa M., Junqueira-de-Azevedo I.L.M., Gonçalves-de-Andrade R., Kobashi L.S, Almeida D.D., Ho P.L. and Tambourgi D.V. (2008)., Transcriptome analysis of Loxosceleslaeta(Araneae, Sicariidae) spider venomous gland using expressed sequence tags., BMC Genomics, 9, 279.
  49. Ferrer V.P., de Mari T.L., Gremski L.H., Trevisan Silva D., da Silveira R.B., Gremski W., Chaim O.M., Senff-Ribeiro A., Nader H.B. and Veiga S.S. (2013)., A novel hyaluronidase from brown spider (Loxoscelesintermedia) venom (Dietrich, PLoSNegl. Trop. Dis., 7, E2206-E2206.
  50. de Fernandes-Pedrosa M.F., Junqueira de Azevedo I.L.M., Goncalves-de-Andrade R.M., van den Berg C.W., Ramos C.R.R., Ho P.L. and Tambourgi D.V. (2002)., Molecular cloning and expression of a functional dermonecrotic and haemolytic factor from Loxosceleslaeta venom., Biochem. Biophys. Res. Commun., 298(5), 638-645.
  51. vanMeeteren L.A., Frederiks F., Giepmans B.N.G., FernandesPedrosa M.F., Billington S.J., Jost B.H., Tambourgi D.V. and Moolenaar W.H. (2004)., Spider and bacterial sphingomyelinases D target cellular lysophosphatidic acid receptors by hydrolyzing lysophosphatidylcholine., J. Biol. Chem., 279, 10833-10836.
  52. Luch A. (2010)., Mechanistic insights on spider neurotoxins., EXS, 100, 293-315, PubMed: 20358687.
  53. Orlova E.V., Rahman M.A., Gowen B., Volynski K.E., Ashton A.C., Manser C., van Heel M. and Ushkaryov Y.A. (2000)., Structure of alpha-latrotoxin oligomers reveals that divalentcation-dependent tetramers form membrane pores., Nature Structural Biology, 7, 48-53.
  54. Ashton A.C., Rahman M.A., Volynski K.E., Manser C., Orlova E.V., Matsushita H., Davletov B., van Heel M., Grishin E.V. and Ushkaryov Y. (2000)., Tetramerisation of alpha-latrotoxin by divalent cationsisresponsible for toxin-induced non-vesicular release and contributes totheCa(2+)-dependent vesicular exocytosis from synaptosomes., Biochimie, 82(5), 453-468.
  55. Ushkaryov Y. (2002)., α-Latrotoxin: from structure to some functions., Toxicon, 40, 1-5.
  56. Rohou A., Nield J. and Ushkaryov Y.A. (2007)., Insecticidal toxins from black widow spider venom., Toxicon, 49(4), 531-549.
  57. Volynskiĭ K.E., Volkova T.M., Galkina T.G., Krasnoperov V.G., Pluzhnikov K.A., Khvoshchev M.V. and Grishin E.V. (1999)., Molecular cloning and primary structure of cDNA fragment for alpha-latrocrustatoxin from black widow spider venom., BioorgKhim, 25, 25-30.
  58. Gibbs G.M., Roelants K. and O, The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1proteins--roles in reproduction, cancer, and immune defense., EndocrRev., 29, 865-897.
  59. Silva E.C., Camargos T.S., Maranhão A.Q., Silva-Pereira I., Silva L.P., Possani L.D. and Schwartz E.F. (2009)., Cloning and characterization of cDNA sequences encoding fornew venom peptides of the Brazilian scorpion Opisthacanthus cayaporum., Toxicon, 54(3), 252-261.
  60. Liu Z.C., Zhang R., Zhao F., Chen Z.M., Liu H.W., Wang Y.J., Jiang P., Zhang Y., Wu Y., Ding J., Lee W. and Zhang Y. (2012)., Venomic and transcriptomic analysis ofcentipede scolopendra subspinipes dehaani., J. Proteome Res., 11(12), 6197-6212.
  61. Baek J.H., Oh J.H., Kim Y.H. and Lee S.H. (2013)., Comparative transcriptome analysis of the venom sac and gland ofsocial wasp Vespa tropica and solitary wasp Rhynchium brunneum., Journal of Asia-Pacific Entomology, 16(4), 497-502.
  62. Bouzid W., Klopp C., Verdenaud M., Ducancel F. and Vétillard A. (2013)., Profiling the venom gland transcriptomeofTetramoriumbicarinatum (Hymenoptera: Formicidae): The first transcriptome analysis of an ant species., Toxicon, 70, 70-81.
  63. Cassola A.C., Jaffe H., Fales H.M., Castro-Afeche S., Magnoli F. and Cipolla-Neto J. (1998)., Omega-phonetoxin-IIA: a calcium channel blocker from the spider Phoneutrianigriventer., Pflugers Arch, 436(4), 545-552.
  64. Schweitz H., Bruhn T., Guillemare E., Moinier D., Lancelin J.M., Berees L. and Lazdunski M. (1994)., Kalicludines and kaliseptine. Two different classes of sea anemone toxins forvoltage sensitive K+ channels., J. Biol. Chem., 270, 25121-25126.
  65. Zupunski V., Kordis D. and Gubensek F. (2003)., Adaptive evolution in the snake venom Kunitz/BPTI protein family., FEBS Letter, 547(1-3), 131-136.
  66. Dy C.Y., Buczek P., Imperial J.S., Bulaj G. and Horvath M.P. (2006)., Structure ofconkunitzin-S1, a neurotoxin and Kunitz-fold disulfide variant from cone snail., Acta Crystallogr. D Biol. Crystallogr., 62, 980-990.
  67. Yuan C.H., He Q.Y., Peng K., Diao J.B., Jiang L.P., Tang X. and Liang S.P. (2008)., Discovery of a distinct superfamily of Kunitz-type toxin (KTT) from tarantulas., PLoS ONE, 3, e3414.
  68. Zhao R., Dai H., Qiu S., Li T., He Y., Ma Y., Chen Z., Wu Y., Li W. and Cao Z. (2011)., SdPI, the first functionally characterized Kunitz-type trypsin inhibitor from scorpion venom., PLoS ONE, 6(11), e27548.
  69. Peng K., Lin Y. and Liang S.P. (2006)., Nuclear magnetic resonance studies on huwentoxin-XI from the Chinese bird spider Ornithoctonushuwena: 15N labeling and sequence-specific 1H, 15N nuclear magnetic resonance assignments., ActaBiochim. Biophys. Sin., 38(7), 457-466.
  70. Zobel-Thropp P.A., Correa S.M., Garb J.E. and Binford G.J. (2014)., Spit and venom from scytodes spiders: a diverse and distinct cocktail., J. Proteome Res., 13(2), 817-835.
  71. Kimura T., Ono S. and Kubo T. (2012)., Molecular cloning and sequence analysis ofthe cDNAs encoding toxin-like peptides from the venom glands of tarantula Grammostola rosea., International Journal of Peptides, 1-10.
  72. Kuhn-Nentwig L., Largiader C.R., Streitberger K., Chandru S., Baumann T., Kampfer U., Schaller J., Schurch S. and Nentwig W. (2011)., Purification, cDNA structure and biological significance of a single insulin-like growth factor-binding domain protein (SIBD-1) identified in the hemocytes of the spider Cupiennius salei., Insect Biochem. Mol. Biol., 41(11), 891-901.
  73. Haney R.A., Ayoub N.A., Clarke T.H., Hayashi C.Y. and Garb J.E. (2014)., Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics., BMC Genomics, 15, 366.